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Chapter 18: Time Series 

18.1 Stationary Data Series 
 
In this chapter we consider a series of observation taken from a single entity over time much as we 
assumed in Section 17.5.  The entity generating the data might be a particular company, Web site, 
household, market, geographic region or anything else that maintains a fixed identity over time.  
Our observations look like y1 , y2, ···, yn with a joint density Pr(y1 , y2, ···, yn).  When data are 
collected over time, there is a very important concept that is called stationarity and in fact the 
concept shows up in other places in this book, notably Equation (15.1).  For our purposes, we 
define the stationarity of a time series as 
 
 Pr(yt , yt+1, ···, yt+k) = Pr(yt+m , yt+m+1, ···, yt+m+k), (18.1) 
 
for all t, j and k.  Given that, it must be the case also that for m = ±1,  ±2, ··· 
 
 Pr(yt) = Pr(yt+m)  
 
which then further implies that  
 
 E(yt) = E(yt+m) 
and  
 
 V(yt) = V(yt+m). 
 
Presumably under stationarity it is the case as well that  
 
 Pr(yt , yt+1) = Pr(yt+m , yt+m+1) (18.2) 
 
which would then make obvious the notion that  
 
 Cov(yt , yt+1) = Cov(yt+m , yt+m+1) = γ1. 
 
In general, since  
 
 Pr(yt , yt+j) = Pr(yt+m , yt+m+j) (18.3) 
 
the following is implied 
 
 Cov(yt , yt+j) = Cov(yt+m , yt+m+j) = γj. 
 
The parameter γj is known as the autocovariance at lag j.   Putting all of these results together, we 
can say that  
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Like all covariance matrices, V(y) is symmetric.  If E(yt) does not depend on t, which it should not 
with a stationary series, then we would ordinarily expect to find the series in the neighborhood of 
µ.  History tends to repeat itself, probabilistically.  By the definition of covariance [Equation 
(4.7)]: 
 
 γj = E[(yt - µ)(yt+j - µ)]. 
 
If γj > 0 we would expect that a higher than usual observation would be followed by another higher 
than usual observation.  We can standardize the covariances by defining the autocorrelation,  
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As usual, ρ0 = 1.  The structure of the autocorrelations will greatly help us in understating the 
behavior of the series, y.   

18.2 A Linear Model for Time Series 
 
The time series models that we will be covering are called discrete linear stochastic processes and 
are of the form  
 
 yt = µ + et +  ψ1 et-1 + ψ2 et-2 + ··· . (18.4) 
 
In effect, an observation within the series is conceptualized as being the result of a possibly linear 
combination of random inputs.  The et values are assumed identically distributed with  
 
 E(et) = 0 and 
 
 V(et) = .2

eσ  
 
Further, we will assume that  
 
 Cov(et, et+j) = 0  (18.5) 
 
for all j ≠  0.  These et values are independent inputs and are often called white noise.  We also 
assume that  
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Given the preceding long list of notation and assumptions, what is the expectation and variance of 
our data?  As was pointed out before, it is still the case the E(yt) = µ since we can combine 
Equation (18.4) and the assumption that E(et) = 0. As for the variance of V(yt), 
 
 V(yt) = E(yt - µ)

2
 

 
 = E(µ + et +  ψ1 et-1 + ψ2 et-2 + ··· - µ)

2
 (18.6) 

 
where the two µ's will just cancel.  Squaring the remaining terms, we can collect them into two 
sets:  
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We can quickly dispense of all the cross terms from Equation (18.6) because, by assumption 
[Equation (18.5)] the et are independent.  Worrying just about the first part of the above equation, 
and noting that the expectation of a sum is equal to the sum of the expectation[Equation (4.4)], we 
can then say that  
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Are you game for figuring out the covariance at lag j of two data points from the series?  Here 
goes.  We note that the covariance between yt and yt-j is E[(yt - µ)(yt-j - µ)].  Once again, all values 
of µ will cancel leaving us with  
 
 γj = E[(et +  ψ1 et-1 + ψ2 et-2 + ···) (et-j +  ψ1 et-j-1 + ψ2 et-j-2 + ···)] 
  
 ++ψψ+ψψ+ψ= −−+−−+− ])e()e()e[(E 2
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In this case, E(all cross terms) refers to any term involving E(et , et-m) for m ≠  0 and once again, 
with independent et all such covariances vanish.  That leaves us with the very manageable 
Equation (18.8) 
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Neither the variance in Equation (18.7) nor the covariances in Equation (18.8) can exist unless the 
infinite sum in those two equations is equal to a finite value.   That an infinite series can be finite 
is seen in the reasoning that runs between Equation (15.17) and (15.17).  We will return to this 
concept momentarily, but first we will assume that ψi = φ

i
, with |φ| < 1.  Then  

 
 yt = µ + et + φet-1  φ

2
et-2 + ··· . 

 
It can be shown that  
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That this is so can be seen by defining s = ,1 32
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 and then multiplying by φ 

so that φs - s = 1.  Solving for s leads to the result,  s = .11 φ−   Combining this result with 
Equation (18.7), yt then has a variance of  
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and from Equation (18.8), autocovariances of  
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Needless to say, this will only work for with |φ| < 1, as otherwise, the variance will blow up.  If φ 
= 1 our model becomes  
 
 yt = µ + et + et-1 + et-2 + ··· 
 
     = µ  + et-1 + et-2 + ··· +  et   
 
     = yt-1 + et 
 
and so forth, as we could now substitute for yt-1 above.  Obviously, the variance of a series with φ 
= 1 blows up.   

18.3 Moving Average Processes 
 
A moving average model is characterized by a finite number of non-zero values ψi with ψi = 0 for 
i > q.  The model will then look like the following,  
  
 yt = µ + et +  ψ1 et-1 + ψ2 et-2 + ··· + ψq et-q. 
 
The tradition in this area calls for us to modify the notation somewhat and utilize θi = -ψi which 
then modifies the look of the model slightly to  
 
 yt = µ + et -  θ1 et-1 - θ2 et-2 - ··· -  θq et-q. 
 
Such as model is often called a Moving Average (q) process, or MA(q) for short.  As an example, 
consider the MA(1):  
 
 yt = µ + et - θ1 et-1 

 
 
which can also be written with the Backshift operator, symbolized with the letter B and presented 
also in Equation (17.23):  
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 yt = µ + (1 - θ1B)et, 
 
i. e.  
 
 Bet = et-1, (18.9) 
 
 B · (Bet) = B

2
et = et-1 and (18.10) 

 
 B

0
et = et. (18.11) 

 
We will have much cause to use the backshift operator in this chapter.  For now, it will be 
interesting to look at the autocovariances of the MA(1) model.  These will be  
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OK, that’s a nice result.  What about the autocovariance at lag 2?   
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Since none of the errors overlap with the same subscript, everything vanishes as the errors are 
assumed independent.  Thus we note that for the MA(1),  
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We can plot the autocorrelation function, which plots the value of the autocorrelations at various 
lags, j.  In the case of the MA(1), the theoretical pattern is unmistakable: 
 

  
As we will see later in the chapter, the correlogram, as a diagram such as the one above is called, 
is an important mechanism to identify the underlying structure of a time series.  For the sake of 
curiosity, it will be nice to look at a simulated MA(1) process with θ1 = -.9 and µ = 5.  The model 
would be  
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 yt = et + .9et-1  
 
and ,12

e =σ ,81.1)1( 2
1

2
e0 =θ+σ=γ ,9.)( 1

2
e1 =θσ−=γ 5.011 =γγ=ρ and ρj = 0 for all j > 1.  An 

example of this MA(1) process, produced using a random number generator is shown below:  
 
 
 
 
 
 
 
 
 
 
 
 
If  θ1 = +.9 so that ρ1 = -.5 the correlogram would appear as  
 

  
with the spike heading off in the negative, rather than the positive direction.  The plot of the time 
series would by more jagged, since a positive value of yt would tend to be associated with a 
negative value of yt-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For an arbitrary value of q, an MA(q) process will have autocovariances  
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For example the MA(2) process will have a correlogram that has two spikes:  
  

   

18.4 Autoregressive Processes 
 
Recall that any discrete linear stochastic process can be expressed as 
 
 yt = µ + et +  ψ1 et-1 + ψ2 et-2 + ··· 
  
as was Equation (18.4).  Needless to say this implies that we can express the errors as  
 
 et = yt - µ -  ψ1 et-1 - ψ2 et-2 - ··· . 
 
Our assumption of stationarity requires that the same basic model that holds for et must hold true 
for et-1 which would then be  
 
 et-1 = yt-1 - µ -  ψ1 et-2 - ψ2 et-3 - ··· . 
 
If we substitute the model for et-1 into the model for yt we get  
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You can keep doing this - now we substitute an expression for et-2 and so forth until all the et terms 
are banished and all that remains are yt values, with various coefficients.  Arbitrarily naming these 
coefficients with the letter π, we get something that looks like 
 
 yt =  π1y t-1 + π2yt-2 +  ··· + δ + et. (18.12)  
 
Our discrete linear stochastic process can be expressed as a possibly infinite series of past random 
disturbances [i. e. Equation (18.4)].  If the series is finite, we call it an MA process.  Any discrete 
linear stochastic process can also be expressed as a possibly infinite series of its own past values 
disturbances [i. e. Equation (18.12)].  If the series is finite, we will call it an autoregressive 
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process, also known as an AR process.  This is illustrated below, where we have modified 
Equation (18.12) by assuming that πi = 0 for i > p: 
 
 yt = φ1 yt-1 + φ2y t-2 + ··· + φpy t-p +  δ + et. 
 
To the paragraph above, I would add that a finite AR is equivalent to an infinite MA and a finite 
MA is equivalent to an infinite AR.  Below we will prove the first of these two assertions.  But 
before we do that, it should be noted that all of this gives the data analyst a lot of flexibility in 
creating a parsimonious model.   
 
The AR(1) model looks like  
 
 yt = φ1 yt-1 + δ + et (18.13) 
 
 (1 - φ1B)yt = δ + et (18.14) 
 
If we take Equation (18.13) and substitute the equivalent expression for yt-1, we have  
 
 yt = φ1 [φ1 yt-2 + δ + et-1] + δ + et 
 
and then again 
 
 yt = φ1 [φ1 ([φ1 yt-3 + δ + et-2) + δ + et-1] + δ + et 
 
and so on until we see that we end up with  
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which is an infinite MA process.  As claimed, an AR(1) leads to an infinite MA.   
 
What are the moments of an AR(1) process?  We have  
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For the AR(1), the autocorrelations decline exponentially.  An idealized correlogram is shown 
below:  
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The autocorrelations damp out slowly.  Next we show a random realization of the AR(1) model yt 
= .8yt-1 + 6 + et: 
 
  
 
 
 
 
 
 
 
 
 
 
Another example is identical to the first, but the sign on φ2 is reversed.  The correlogram appears 
below 

 

 
 
and then we see a random realization of the series:  
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18.5 Details of the Algebra of the Backshift Operator 
 
One of the most beautiful aspects of time series analysis is the use of backshift notation.  Say we 
have an AR(1) with parameter φ1.  We can express the model as  
 
 (1 - φ1B)yt = et + δ. 
 
Putting the model in reduced form we have  
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But what does it mean to invert a function with "B" in it?  It produces an infinite series.  To see 
that, start with the basic fact that   
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So far so good.  However, the series  
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differ by 1.  Thus  
 
 s - φ1B · s = 1  
 
and therefore  
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Stationarity, and the need to avoid infinities in the infinite sum, require that  
 
 |φ1| < 1.   (18.16)  
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This is equivalent to saying that the root of that 1 - φ1B = 0 must lie outside the unit circle.   
 

18.6 The AR(2) Process 
 
The AR(2) model is  
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which is stationary if the roots of  
 
 1 - φ1B - φ2B

2
 =  0 

 
lie outside the unit circle, which is to say  
 
 φ1 + φ2 < 1, (18.17) 
 
 φ1 - φ2 < 1 and (18.18) 
 
 |φ2| <  1.  (18.19) 
 
Below, the graph shows the permissible region as a shaded triangle:  
 

  

18.7 The General AR(p) Process 
 
In general, an AR model of order p can be expressed as  
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Note that here we have introduced a new way of writing 1 - φ1B - φ2B

2
 - ··· - φpB

p
, namely to call it 

simply φ(B).  The autocorrelations and the φi are related to each other via what are known as the 
Yule-Walker Equations:  
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which can be used to estimate jφ̂ values.   
 

18.8 The ARMA(1,1) Mixed Process 
 
Consider the model  
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Here we have both an autoregressive and a moving average component.  The AR part results in an 
infinite MA model with  
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In compact notation we can say that ψ(B) = φ

-1
(B) · θ(B).  The MA part results in an infinite AR 

model with  
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Again we can compactify the notation noting that π(B) = φ(B) · θ
-1
(B).  Mixed models let you 

achieve parsimony as you can represent an infinite MA with a finite AR and vice versa. The 
situation that we have at hand can be graphed as follows:  
 

  
 
We conceptualize of our observed series of data as being driven by are series of random shocks, of 
random values or white noise inputs.  These inputs are then passed through a filter with various 
properties and that eventually leads to an output, which consists of our data.  Modeling the data 
requires that we come up with a parsimonious description, one with few model parameters, of the 
filter, i.e ψ(B).   
 
What stationarity is to the AR side, invertibility is to the MA side.  Invertibility requires that the 
roots of   
 
 1 - θ1B - θ2B

2
 - ··· - θqB

q
 = 0  

 
lie outside of the unit circle.   
 

18.9 The ARIMA(1,1,1) Model 
 
A series may be relatively homogeneous, looking pretty much the same at all time periods, but it 
may end up being non-stationary simply because it shows no permanent affinity for a particular 
level or mean.  Even though the original series of data may not be stationary, differences between 
successive observations may be stationary:    
 
 dt = yt - yt-1 = (1 - B)yt.   
 
Simply put, we can apply an ARMA model to the dt.  When we do so, this is called an ARIMA 
model with the middle I referring to the fact that it is integrated.  If the first differences are not 
stationary, the second differences might be, i. e.  
 
 d′t = dt - dt-1 = (1 - B)(1 - B)yt. 
 
The ARIMA(1,1,1) process, with the middle number referring to the number of differences that 
are taken can be described as  
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Thus we see that the ARIMA(1,1,1) is an ARMA(2,1) where the first ARMA AR parameter is 
equal to 1 + φ1 while the second ARMA(2,1) AR parameter is -φ1.  These parameters violate the 
rules for stationarity in Equations (18.17), (18.18) and (18.19).  Similarly, an ARIMA(0,1,1) 
process looks like  
 

ψ(B)et yt 
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 yt = yt-1 + et - θ1et-1  
 
which violates the stationarity rule for an AR(1) [Equation (18.16)] right off the top since "φ1"  = 
1!   
 
Thus we see the importance of differencing the series first, if necessary, prior to fitting an ARMA 
model.    
 
We can wrap up this section with another brief note about the backshift notation and the 
ARIMA(1,1,1) model.  Such a model can be written quite elegantly as  
 
 (1 - φ1B)(1 - B)yt = δ + (1 - θ1B)et 

 

In the model, the constant term δ implies that the average change will have the same sign as δ and 
the series will drift in the direction of the sign of δ.   

18.10 Seasonality 
 
Differencing, AR or MA parameters may be needed at various lags.  For quarterly data, you may 
need to look at lags of 4, or for monthly data, lags of 12, which may occur whenever there are 
yearly patterns in data.  For example, the following pattern seen in quarterly data:  
 

  
may require that you difference the data at a lag of 4, i.e analyze dt = (1 - B

4
)y

t
. 

 

18.11 Identifying ARIMA(p,d,q) Models 
 
In addition to the cues afforded in the autocorrelations, we can also look at what are known as the 
partial autocorrelations.  For each lag j, you estimate ρj controlling for the first j - 1 values ρj-1,  
ρj-2,  ···, ρ1.   
 
For a nonstationary process, the autocorrelations will be large at very long lags.  On the other 
hand, over-differencing tends to produce an MA(1) with θ1 = 1. 
 
For an AR process, the autocorrelations will decline exponentially.  The partial autocorrelations 
will exhibit significant spikes at the first p lags.   
 
For an MA process, the autocorrelations will exhibit significant spikes at the first q lags.  The 
partial autocorrelations will exhibit exponential decline.   
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For a mixed process, the autocorrelations as well as the partial autocorrelations will decline 
exponentially.   
 
It is generally a good idea to run the error of your model through the same diagnostic process to 
make sure that it is indeed acting like white noise.  In effect, one adds a term to the ARIMA 
model, and then looks at the error to see if it is white noise yet.  The process is repeated until the 
error is completely whitened.   
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