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Chapter 15: Stochastic Choice 
 
Prerequisites: Chapter 5, Sections 3.9, 3.10 

15.1 Key Terminology 
 
The topic of this chapter is a set of choice models that deal with consumer behavior over time.  We 
will begin by looking at data that tabulates what consumers do on two sequential purchase 
occasions.  Do they buy the same brand twice, or do they switch from one brand to another?  Later 
in the chapter we will look at the number of times a particular brand has been purchased, a type of 
data often called purchase-incidence data.   
 
In some cases, we will assume that the population being studied is homogeneous.  This is 
tantamount to the Gauss-Markov assumption [presented in Equation (5.16)] that we typically 
make in the general linear model, that is, that each observation can be described by the same 
parameter.  In other cases, we may assume that the population being studied is heterogeneous with 
that parameter taking on different values.  The parameter may itself follow some sort of 
distribution, often called a mixing distribution.   
 
There is a different sort of homogeneity-heterogeneity distinction that comes up in models dealing 
with data collected over time.  Regardless as to whether each unit, browser, consumer or 
household in the population can be described by the same parameter, is it possible that the 
parameter can change over time?  A parameter that remains invariant across time periods is 
generally referred to as being stationary rather than homogeneous.  More formally, we would 
define stationarity for a parameter θ such that  
 
 θt = θt′ = θ for all t, t′ = 1, 2, ···, T. (15.1) 
 
That terminology out of the way, let us now turn to the brand switching matrix which contains the 
key raw data for the models of the next few sections.   

15.2 The Brand Switching Matrix 
 
In what follows we will assume that we have three brands; call them A, B and C.  Of course this 
terminology should not obscure the generality of the type of data we will be discussing.  The three 
brands might actually be three Web sites, for example.  In any case, in this section for each 
household we will be looking at a series of observations across T time periods: y1, y2, ···, yt, ··· yT.  
We might admit here that the yt values should also have a subscript for household, but that is 
dropped for notational convenience.  You can think of the value yt as being randomly selected 
from some population of households. For now we will look at T = 2 purchase occasions and 
organize the data from these two occasions in a two way contingency table that might look a lot 
like the one below:  
 

 Purchase Occasion Two  
  A B C  

A 10 5 10 25 
B 8 12 5 25 

Purchase 
Occasion 
One C 10 10 30 50 

 
The table tells us that, for example, 10 households bought brand A on week one and then bought it 
again on week 2.   On the other hand, of the 25 households who bought brand A on week one, 5 of 
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them switched to brand B on the second purchase occasion.  It will be useful to be clear on 
different sorts of probabilities that can be formed from raw data such as these.  An example of a 
joint probability would be the probability that a household in the sample bought A on week 
(occasion) one and then B on week 2, in other words Pr(y1 = A and y2 = B).  We can also write 
this as Pr(A, B).  Making the notation a bit more general, let us define Pr(j, k) as the joint 
probability that brand j is chosen on the first occasion and k on the second.  From the table we can 
see that Pr(A, B) = 5/100 since 5 families from the sample of 100 families did just that.   
 
A marginal probability gives the summary of a row or a column.  For example, what is the 
probability of buying brand A on week one?  The answer is 25/100, as 25 out of 100 families did 
that, and that figure also happens to be the market share for brand A on week one.  As such we 
might use the letter m and notate that value .m )1(

A  Alternatively we could also use an expression 
like Pr(A), where it is understood we are talking about week one.   
 
Finally, a conditional probability involves subsetting the table in some way. A conditional 
probability looks at the odds of something happening within that subset of the table.  We might 
ask, given that a family bought A on week one, what is the conditional probability that they would 
turn around and buy B on week two? In other words, what is Pr(y2 = B | y1 = A)?  A vertical bar is 
traditionally used to indicate a conditional probability.  Here the numerator differs from the joint 
probability.  You can think of this as the probability of B conditional on A, or given A.  In either 
case, Pr(B | A) = 5/25, as there are 25 families who bought brand A on week one, and of these, 5 
bought B on the next occasion.   Again we could make the notation a bit more general by referring 
to Pr(k | j),  or pjk, as the conditional probability that brand k is chosen on the next occasion given 
that j was chosen on the previous occasion. While the notation pjk will be used to refer to Pr(k | j), 
this probability is actually in position j, k of the transition matrix, illustrated below.   
 
We might note that  
 
 ,)k,jPr(m

k

1
j ∑=  (15.2) 

 

 
)jPr(
)k,jPr()j|kPr( = and that (15.3) 

 
 .1)j|kPr(

k
∑ =  (15.4)  

 
In all three cases above the summation over the index k is taken to mean over all J brands in the 
study that appear in the switching matrix. Here the value 1

jm  is the share for brand j on week 1.   

15.3 The Zero-Order Homogeneous Bernoulli Model  
 
In this section we will once again be looking exactly two purchase occasions, i. e. T = 2.  We 
begin by contemplating exactly two brands, A and B, and we will look at this situation with a 
particularly simple model.  The zero-order homogeneous Bernoulli model assumes that on any 
purchase occasion the probability that A is bought is p.  Here are the joint probabilities:   
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For example, looking at the joint probability Pr(A, A), according to the model we have two 
independent events, each one occurring with a probability of  p.  The probability of two 
independent events can be calculated by multiplication.  That the two events are independent is 
one of the strongest assumptions of the model.  In effect, it assumes no feedback from one 
purchase event to the next.  In other words, this model is zero-order just like a series of coin flips.  
Recall that with a fair coin, regardless of how many heads in a row have come up, the probability 
of a head on the next toss is still exactly .5.   
 
 The joint probability of any string of purchases can be calculated from multiplication as in  
 
 Pr(A, B, A, A, B, ···) = p · (1 - p) · p · p (1 - p) ·   ··· 
 
The probability of r purchases of A out of T occasions would be  
 

 rTr )p1(p
r
T −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (15.5) 

 

where the notation ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
T

refers to the number of combinations of T things taken r at a time and is 

given by  
 

 
)!rT(!r

!T
r
T

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
and T! = T · (T - 1) ·  (T - 2) ··· 1.  The conditional probabilities can also be displayed in the same 
occasion-by-occasion format.  When displayed as below, the table is called a transition matrix.    
 
  
 
 
 
 
The elements of the transition matrix, for example Pr(k | j), the probability that k is chosen given 
that j was chosen previously, are notated pjk since that conditional probability arises from row j 
and column k.   

15.4 Population Heterogeneity and The Zero-Order Bernoulli Model  
 
Lets say that the value of p is itself a random variable, rather than a fixed parameter that describes 
the population of households, but there is still no feedback from one occasion to the next.  On the 
surface it seems that this should imply, just as in a series of coin flips, that the next flip should not 
depend on what happens in any previous flips, right?  It turns out the population heterogeneity and 
the lack of stationarity over time have similar implications in switching data.  To get a handle on 

  Occasion Two 
  A B 

A p
2
 p (1 - p) Occasion 

One B (1 - p) p (1 - p)
2
 

  Occasion Two 
  A B 

A p (1 - p) Occasion 
One B p (1 - p) 
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the nature of the heterogeneity of the value of p, we typically use the Beta distribution (Lilien and 
Kotler 1983), where  
 
 Pr(p) = c1 p

α-1 (1 - p)β-1 (15.6) 
   
The constant c1 is a place holder that needs to be there to make sure that the distribution integrates 
to 1, i. e. it must be the case that  
 

 1dp)pPr( =∫
∞

∞−

 

 
because Pr(p) is a density function (see Section 4.2).  The two parameters of this distribution, α 
and β, control the shape of it.  As compared to the normal, a wide variety of shapes are possible!  
Some idealized examples are pictured below in a graph that shows the Pr(p) on each of the y-axes:  
 

  
Given some value of p, the likelihood of r purchases out of T occasions (Lilien and Kotler 1983) is  
 
 Pr(r, T | p) = c2 p

r (1 - p)T-r. (15.7)  
 

The constant c2 is a place holder for ,
r
T
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 which does not figure into the derivation that follows.  

At this time it is appropriate to invoke the name of the Reverend Thomas Bayes, given that his 
name is attached to a simple theorem that connects two different sorts of conditional probabilities.  
For any two events, a and b, we know that by definition  
 

 
)bPr(
)b,aPr()b|aPr( =  

 
but also that  
 

β = 4 

α = .5 

α = 1 

β = 1 

α = 2 

α = 4 
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 .
)aPr(
)b,aPr()a|bPr( =  

 
This suggests that there are two ways to write Pr(a, b),  
 
 Pr(a, b) = Pr(a |b) · Pr(b) = Pr(b | a) · Pr(a), 
 
which, when set equal to each other yields  
 

 

.
)bPr(

)aPr()a|bPr()b|aPr(

)aPr()a|bPr()bPr()b|aPr(

⋅
=

⋅=⋅
 

 
From his theorem we can deduce that  
 

 
)T,rPr(

)pPr()p|T,rPr()T,r|pPr( = . (15.8)  

 
In the numerator of the right hand side we see the likelihood of the data given the model from 
Equation (15.7), i.e. Pr(r, T | p).  The density for p, assumed to be beta distributed, is also in the 
numerator.  This is usually called the prior distribution, or sometimes just the priors.  The left 
hand side also has a name, the posterior probability.  It is the posterior probability of choice on the 
next occasion given a history of r purchases out of T occasions.    If we define c3 as 1/ Pr(r, n), 
then the posterior probability can be rewritten as  
 

 
11rTr

4

3

)p1(p)p1(pc

)pPr()p|T,rPr(c)T,r|pPr(

−β−α− −⋅−⋅=

⋅⋅=
  (15.9) 

 
which means that the posterior probability looks like a beta distribution with parameters α* = α + 
r and β* =  β + T - r.  The upshot is that even though there is no memory or purchase feedback in 
this model, the posterior probability makes it look like there is.  But the reason for this is that the 
population is not homogeneous.  If we collect up all the households for which no one bought A, 
we probably have a group for whom p is lower than average.  Dividing the sample of households 
in this way makes it look like there is contagion - a bunch of B's in a row lead to a higher 
probability of another B, not another flip of the coin.    
 
We can estimate the choice parameter, p, using  (Lilien and Kotler 1983) 
 

 .
T

r)T,r|p(Ep̂
+β+α

+α
==  (15.10) 

 
For example, for T = 3 we could look at eight possible triples that could occur with two brands 
and three weeks; AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB.  The value of r is 0 for triple 
BBB.  According to the model, the prediction for all those with three purchases of Brand B in a 
row would be  
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3

)3,0|p(Ep̂
+β+α

α
== . 

 
For r = 1 and T = 3 we could have ABB, BAB and BBA.  All three sequences lead to the same 
estimate on trial 4,  
  

 
3

1)3,1|p(Ep̂
+β+α

+α
==  

 
As you can see, we can derive values for the choice probabilities, that is, values of p, on week 4.  
These probabilities arise from the more fundamental parameters that underlie the distribution of p, 
namely α and β, which are the unknowns and as such must be estimated from the sample.  We 
could certainly minimize Pearson Chi Square across the eight data points from the triples.    
According to Minimum Pearson Chi Square, we pick values of α and β in such a way as to make  
 

 ∑
−

=χ
8

j j

2
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)p̂p(

ˆ  (15.11) 

 
as small as possible.  We could also use modified minimum Chi Square or Maximum Likelihood. 
To do any of these we would need to determine the derivates of the objective function and drive 
them to zero,  
 

 ,0
ˆˆ 22

=
β∂

χ∂
=

α∂

χ∂
 

 
using the methods described in Section 3.9.  As there are eight triplets from three weeks worth of 
purchases, and two unknowns, the model can be tested against Chi Square on 6 degrees of 
freedom.   

15.5 Markov Chains 
 
Now we will look at models that assume homogeneity across consumers or households, but not 
zero memory.  In fact, a defining aspect of a Markov chain is that the system has memory that 
goes back one time period.  If we define yt as the brand chosen on occasion t, this memory can be 
described as  
 

 Pr(yt = j | yt-1, yt-2, ···, y0) = Pr(yt = j | yt-1).   (15.12) 
 
We also assume stationarity which can be interpreted as the statement below:  
 
 Pr(yt = j | yt-1 ) = Pr(yt′ = j | y t′-1) 
 
for all t, t′ and j.   
 
A Markov chain is characterized by a transition matrix and an initial state vector.  The transition 
matrix consists of the conditional probabilities Pr(k | j) such that .1)j|kPr(

k
∑ =  A sample 

transition matrix is presented below:  
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For example, in the lower left hand corner we see Pr(A | B) which is element 2,1 (p21) in the table 
and is equal to .5.  The second characterizing feature of a Markov chain is the initial vector which 
represents the market shares at time zero.  A typical element would be }m{ )0(

j which is the market 
share for brand j at time 0.  In that case we can define the J by 1 vector of shares as 
 
 ]mmm[ )0(

J
)o(

2
)0(

1
)0( L=m  

 
Given a transition matrix and an initial state, we can now predict the market shares for any time 
period.  For example, looking at brand k, we might ask what will the share of brand k be after one 
week.  To do this, we can use the Law of Total Probability.  After time 0 there are J things that 
could have happened, that is to say there are J ways for k to be picked at time 1.  A purchaser of 
brand 1 could have switched to k, a purchaser of brand 2 could have switched to k, and so forth 
until we reach the last brand, brand J.  This is illustrated below:   
 

   
We can use a slightly more elegant notation to say the same thing as  
 

 )0(
j

J

j
jk

)1(
k mpm ∑= . 

 
Here note that the law of total probability has us running down the rows of the P matrix, that is, 
running through all the ways that event k can happen at time t + 1. We can also express all of the 
market shares at one time using linear algebra,  
 
 Pmm ][][ )0()1( ′=′  
 
 PPmmPmm ][][][][ )0()1()1()2( ′=′=′=′  
 

 
LLLL ===

′=′=′=′ PPPmmPmm ][][][][ )0()1()2()3(

 

 
 .][][ t)0()t( Pmm ′=′  (15.13) 
 
We frequently assume an equilibrium such that the share vector no longer changes and estimate 
the elements of P from panel data.  These elements themselves may be modeled with a smaller 
number of parameters that reflect the fundamental marketing concepts that are driving the data.  

  Occasion t + 1 
  A B 

A .7 .3 Occasion t B .5 .5 

)0(
J

)0(
2

)0(
1

)1(
k m)J|kPr(m)2|kPr(m)1|kPr(m ⋅++⋅+⋅= L

Pr (buy k given  
previous purchase  
of brand 1) 

Pr (bought 1 previously) 
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Recall that in the zero-order homogeneous Bernoulli model the transition matrix took on the 
appearance: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

p1p
p1p

 . 

 
Here remember that the rows represent the state of the market at time t while the columns are the 
states at time t + 1.  Element pjk is the conditional probability, Pr(k | j).   
 
Something we might call the Superior-Inferior model has a transition matrix  
 

 .
p1p

01
⎥
⎦

⎤
⎢
⎣

⎡
−

 

 
No one who ever tries the first brand goes back to the second.  One of the two states is an 
absorbing state - eventually the whole market will end up there. 
 
In the Variety-Seeking model the propensity to buy a brand again is reduced by some fraction v: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
−−−−

−−
)p1(v)p1(

vpp
  

 

You will note that since ,1p
J

k
jk =∑ we can figure out one column by subtraction.  Also note what 

happens as v goes from 0 to 1.  The closer v gets to 0, the closer the model resembles the 
Bernoulli.   
 
How would we estimate the parameters v and p?  We could look at the 8 triples that are possible, 
AAA, AAB, ···, BBB.  Each one has a prediction from the model.  For example, for AAA we 
would have  
 
 .)vpp()AAAPr( 3−=   
 
We would have 8 data points, and two unknowns, and we could just use Minimum Pearson Chi 
Square, Maximum Likelihood, or other methods as described in Section 12.4 as well as for the 
logit model in Sections  13.3 and 13.4. 

15.6 Learning Models 
 
The models of this section are part of Linear Operator Theory, which was originally applied in 
Marketing to learning about frozen orange juice by Kuehn.  Here we are going to assume that we 
have but one brand of interest, that is either purchased or not:  
 

 
⎩
⎨
⎧

=
ttimeatboughtnotiserestintofbrandtheif0

ttimeatboughtiserestintofbrandtheif1
y t  

 
If our brand is purchased at time t - 1, we apply the acceptance operator and presumably learning 
occurs:  
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 pt = α1 + β1 pt-1 
 
while on the other hand, if the brand is rejected, we apply the rejection operator: 
  
 pt = α2 + β2 pt-1 . 
 
Consider what happens when a loyal consumer repeatedly buys our brand,  
 
 p1 = α1 + β1 p0 
 
 p2 = α1 + β1 [α1 + β1p0] 
 
 ···· = ···    
 
or working recursively backwards from time t  
 
 pt = α1 + β1 pt-1 
 
 pt = α1 + β1 [α1 + β1 pt-2] 
 
 pt = α1 + β1[α1 + β1 (α1 + β1 pt-3)] 
 
Now, multiplying out this last version we have  
 
 .pp 3t

3
11

2
1111t −β+αβ+αβ+α=  

 
Eventually, we note that a pattern emerges so that we have  
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+β+β+β+α=

+αβ+αβ+αβ+αβ+α=
 (15.14) 

 
The term in the brackets is an infinite series, but that does not mean that it is equal to infinity.  Call 
it b 
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 (15.15) 

 
For Equation (15.15) to work requires that .10 1 <β≤  If we multiply Equation (15.15) by β1 we 
get  
 
  
 L+β+β+β=β 3

1
2
111b  (15.16) 
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Subtract Equation (15.16) from Equation (15.15) above and the difference is 1: 
 
 b - β1 · b  = 1 
 
 b (1 - β1 ) = 1 
  

 .
1

1b
1β−

=  (15.17)  

 
Combining Equation (15.14) and Equation (15.17), we can conclude that if the brand is always 
purchased, the probability will approach  
 

 
1

1
t 1

p
β−

α
= , (15.18) 

 
a phenomenon known as incomplete habit formation.  In this Linear Operator Theory, if β1 = β2 = 
0 then we end up with a transition matrix just like the one shown below:  
 

 ⎥
⎦

⎤
⎢
⎣

⎡
α−α
α−α
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11

1
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which is a zero-order Bernoulli model!  
 

15.7 Purchase Incidence 
 
The main exemplar of a purchase-incidence model uses the Negative Binomial Distribution or 
NBD.  In order to lead into that, however, we will start with two simpler models, the first of which 
is the binomial, named after the terms in the expansion of  
 
 (q + p)

T
 

 
with q = 1 -  p.  Term number r + 1 is qT-r pr which we have already seen used in the expression for 
the probability of T things taken r at a time in Equations (15.5) and (15.7): 
 

 rTr )p1(p
r
T −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 

The term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
T

gives the number of ways out T to have r "successes" while rTr )p1(p −− is the 

probability of each one of those ways.  Now, consider a table from a panel of n households, with 
each household being categorized in terms of how many purchases of our brand that they have 
executed during the T week study period:  
 
  

r Number of Households 
0 f0 
1 f1 
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2 f2 
··· ··· 

fT 
Total n 
  

 
with a typical entry being fr, which gives the number of households with r purchases during the 
study period.  These are the data that we will attempt to account for with the model.  The binomial 
model states simply that the probability of a purchase by any household on any week is p.  We can 
estimate p using a particularly simple method called the method of moments. It is the case that  
 
 pT)r(Ex ==  (15.19) 
 
gives the average number of purchases across households, or in other words, the average number 
of purchases per household.  Solving for p we have simply  
 

 .
T
xp =   

 
 
For example, if the average household purchase 2 items out of 4 occasions, then p = 2/4 = .5.  
According to the binomial model, we could substitute .5 for p in the formula 
 

 .p)p1(
r
T

Tf̂ rrT
r

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=  (15.20)  

 
We could test the model with a Chi Square that compares the predicted and observed frequencies 
of households with 1, 2, ···, T purchases.   
 
The Poisson model arises from the Binomial by letting T →  ∞ and p → 0 but holding Tp = λ.  
The model originated from studies of the deaths of Prussian soldiers from kicks to the head by 
horses, apparently a worrisome occupational hazard.  The number of Army corps with one death, 
two deaths, and so forth, was tabulated.  The Poisson model asserts that  
 

 
!r

enf̂
r

r
λ

⋅= λ− . (15.21)  

 
Fortunately for Prussian soldiers, the Poisson, which means fish in French but is actually named 
after it's inventor, is considered a distribution for "rare" events.  The model assumes that there are 
a large number of small time periods with a small, but constant purchase probability in any time 
period.  This is no doubt more realistic than the Binomial model, but unfortunately the Poisson 
makes an odd prediction about the probability that t time periods pass between one purchase 
occasion and the next  
 
 Pr(t) = λe-λt (15.22)  
 
which is a special case of the exponential distribution.  That this assumption is not in keeping with 
the reality of shopping can be seen in the graph below that looks at the relationship between time 
elapsed and the probability of a purchase:  
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The Poisson has the interesting property that its mean is equal to its variance,  
 
 λ== x)r(E   
 
 .s)r(V 2 λ==  
 
We could easily use the Method of Moments to estimate λ, and of course we also have at our 
disposal Minimum χ

2
, which would require that we compare the rr f̂andf values, Maximum 

Likelihood, and so forth.   
 

15.8 The Negative Binomial Distribution Model 
 
The NBD model is named from the terms in the expansion of (q - p)-r.  The distribution can arise 
in a number of ways.  For example, it could represent the probability that T trials will be needed 
for r successes.  In effect, it is a binomial where the number of coin tosses is itself the random 
outcome.  It could also represent a Poisson distribution with a contagion process such that the 
Poisson parameter λ changes over time.  Another possible mechanism that leads to the NBD is 
where we have a Poisson model but the λ  values is distributed across households according to the 
gamma distribution.  The gamma is part of the general family of distributions that includes the Chi 
Square as a special case.  According to the NBD model, the number of households purchasing the 
brand under study is  
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⋅= . (15.23)  

 
The gamma function, Γ(·), not to be confused with the gamma distribution, acts like a factorial 
operator (the ! symbol) for non-integral arguments.  For integral q, Γ(q) = (q + 1)!.  In general,  
 

 .dxex)q(
0

x1q∫
∞

−−=Γ  (15.24) 

 
Here we might note certain similarities between the Binomial model in Equation (15.20) and the 
Negative Binomial in Equation (15.23).  In the latter, the role of p is played by k/(k + m) while 1- 
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p is analogous to m/(k + m).  As before, we will be estimating k and m according to the method of 
moments, or using ML or Minimum Chi Square.   
 
 
Here we might note certain similarities between the Binomial model in Equation (15.20) and the 
Negative Binomial in Equation (15.23).  In the latter, the role of p is played by )mk(k + while 1 - 
p is analogous to .)mk(m +   As before, we will be estimating k and m according to the method 
of moments, or using ML or Minimum Chi Square.   
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