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Chapter 12:  Judgment and Choice 
 
Prerequisites: Chapter 5, Sections 3.9, 3.10, 6.8 

12.1 Historical Antecedents 
 
In the 19th century Gustav Fechner attempted to understand how it is that humans perceive their 
world.  The simplest place to start was by asking how it is that we perceive basic physical 
quantities such as the  heaviness of a block of wood, the brightness of a light, or the loudness of a 
tone.  He thought that there were three important elements behind the sequence by which the 
process operates:  
 
(1) The external physical environment, which we will denote n 
(2) Brain activity, which we will denote m, and  
(3) Conscious perception, which we will denote s.   
 
Fechner believed that the relationship between (2) and (3) was inaccessible to science, and that 
anyway, they were just two different ways of looking at the same phenomenon. On the other hand, 
the relationship between (1) and (2) was part of physics, or perhaps physiology.  Here, he 
concluded that there was some sort of one-to-one correspondence.  He decided that he would 
investigate the relationship between (1) and (3), and, some would argue, by doing so created the 
science that we call psychology.  He was concerned therefore with the way that simple physical 
stimuli come to be perceived.  He proposed the following law, now known as Fechner’s Law: 
 
 s = c ln [n / n0] (12.1) 
 
where s has been previously defined as the conscious perception of the loudness, brightness, or 
heaviness in question; and n the actual physical value of the stimulus.  The constant c summarizes 
the sensitivity of the sense in question, while n0 is the absolute threshold.  The absolute threshold 
is the lowest limit of perception.  For example, if we are talking about sounds, n0 would be the 
softest sound detectable.  The fact that Fechner used a log function is particularly meaningful.  We 
can relate this to a variety of concepts, such as the economic notion of diminishing returns.  The 
function predicts that proportional changes are equally important.  In other words, if I am holding 
a one ounce block and I add 1/10th of an ounce of additional weight, this creates the same amount 
of perceived change as if I had a 1 pound block and I add 1/10th of a pound.  This notion was later 
empirically verified by Weber who discovered that the size of a just noticeable difference was 
proportion to n,  
 
 Δn = kn  (12.2) 
 
where k quantifies the sensitivity of the sense for the observer.   
 
We now continue this historical review with the notion of absolute detection.  We will say that the 
physical stimulus is measured in units of n, for example seconds, kilograms, centimeters, foot-
candles, and so forth.  In the 19th century it was imagined that there was a threshold, above which 
perception of the stimulus began, and below which there was no perception.  Assuming we are 
dealing with brightness, it was assumed that as n increased, the conscious perception of the light 
popped suddenly into existence:  
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The position where this occurred was called the absolute threshold. A related experiment might 
have subjects compare two lights, and to make a judgment as to which was brighter.  Then the 
question became one of difference thresholds, that is, a point above which the comparison light 
would be perceived of as identical and below which it would be perceived as dimmer, and another 
point, above which the comparison would be seen as brighter.  The situation is pictured below. 

 

 
 

We would say that the upward JND (Just Noticeable Difference) would be the interval n3 – n2 and 
the downward JND would be n2 – n1.  Things did not turn out like the graphs pictured above, 
however.  In fact, empirical data for the probability of detection revealed a much smoother 
function.  An idealized example is given below:  
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12.2 A Simple Model for Detecting Something 
 
Here we propose a simple model that says the psychological effect of a stimulus i is  
 
 iii ess +=  (12.3)  
 
where is is the impact on the sense organ of the observer and ei is random noise, perhaps added by 
the nervous system, the senses or by distraction.  Let us assume further that, as in Section 4.2,   
 
 ei ~ N(0, σ

2
)   so that  

 
 ),s(N~s 2

ii σ . (12.4) 
 
Now, assume that there actually is a fixed threshold so that the subject detects the stimulus if si ≥ 
s0, i. e. the threshold is located at s0.  More formally we can write that   
 
 Pr[Detect stimulus i] = ip̂  = Pr[si ≥ s0] . (12.5) 
 
At this point we need to establish a zero point for the psychological continuum, s, that we have 
created.  It would be convenient if we set s0 = 0.  This psychological continuum is of course no 
more than an interval scale, and so its origin is arbitrary.  We might as well place the zero point at 
a convenient place.  In that case, we have  
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Now we define .ssz ii
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=   In that case dz/dsi = 1/σ or dz = dsi/σ.  This will allow us to change 

the variable of integration, or in simple terms, switch everything to a standardized, z-score 
notation.  This is shown below:  
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In words, as we go from the first line above to the last, we change from an "s-score" to a 
standardized z-score.  In the first and second lines the integration begins at 0, but in the third line 
we have standardized so that we have subtracted the mean (from 0) and divided by σ.  One last 
little change and we will have a very compact way to represent this probability.  Since the normal 
distribution is symmetric, the area from +z to +∞ is identical to the area between -∞ and –z.  In 
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terms of the equation above, the area between
σ
− is0 and +∞ is then the same as that between -∞ 

and .si

σ
 We can therefore rewrite our detection probability as 
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where Φ(·) is the standard normal distribution function [see Equation (4.14)].  A graphical 
representation of all of this appears below.   
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We can now summarize two points; one general and one particular to the detection problem at 
hand.  In general, we might remember that for any random variable, call it a, for which a ~ N 
[E(a), V(a)],  then  
 
 Pr [a ≥ 0] = Φ [E(a) / √ V(a)] .  (12.8) 
 
In this particular case, si is playing the role of a, with is being E(a) and σ

2
 being the V(a).  And 

why do detection data not look like a step function?  According to this model, they should look 
like a normal ogive.  As the physical stimulus is varied, lets say by making it brighter and 
therefore easier to detect, is becomes larger and more and more of the distribution of si ends up 
being to the right of the threshold. This is illustrated in the figure below; with the shaded area 
representing the probability of detection of a light at three different intensities: dim, medium and 
bright.   
 

  
 

12.3 Thurstone’s Law of Comparative Judgment 
 
In the previous section we have discussed how people can detect something such as a dim light in 
a darkened room, a slight noise in an otherwise silent studio, or a small amount of a particular 
smell.  That experimental situation is called absolute judgment, and we modeled it by positing the 
existence of a fixed threshold plus normal random noise.  Now let’s contemplate how people 
compare two objects, for example, which of two wooden blocks are heavier, a procedure known as 
comparative judgment.  In 1927 L. L. Thurstone published a paper in which he specified a model 
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for the comparative process, generalizing the work that had gone on before by extending his 
analysis to stimuli that did not have a specific physical referent.  His chosen example was “the 
excellence of handwriting specimens.”  This sort of example must stand alone, in the sense that we 
cannot rely on some sort of physical measure to help us quantify excellence.  To Thurstone, that 
did not really matter.  He simply proposed that for any property for which we can compare two 
objects, there is some psychological continuum.  And the process by which we react differently to 
the several comparison objects is just called the “discriminal process.”   
 
We should not let this slightly anachronistic language throw us off.  Thurstone’s contribution was 
fundamental and highly applicable to 21st century marketing.  Suppose I ask you to compare two 
soft drinks and to tell me which one you prefer.  This is the situation that Thurstone addressed.  
We can use his method to create interval scale values for each of the compared brands, even 
though we are only collecting ordinal data: which of the two brands is preferred by each subject.  
This is the essence of psychological scaling – use the weakest possible assumptions (i. e. people 
can make ordinal judgments of their preferences) and still end up with interval level parameters.  
In the case of preference judgments, these parameters are usually called utilities, based on the 
economic theory of rational man.   
 
To create an interval scale, Thurstone borrowed a data collection technique called paired 
comparisons.  In paired comparisons, a subject makes a judgment on each unique pair of brands. 
For example, with four brands; A, B, C and D the subject compares A and B, AC, AD, BC, BD 

and CD.  In general there are q =
2

)1t(t − unique pairs among t brands.  An additional point should 

be added here.  For one, it turns out that just looking at pairs is not the most efficient way to scale 
the t brands.  Despite this, the mathematics behind Thurstone’s Law is very instructive.   
 
Lets look at a miniature example of paired comparison data.  Consider the table below where a 
typical entry represents the probability that the row brand is chosen over the column brand.   
 

 A B C 
A - .6 .7 
B .4 - .2 
C .3 .8 - 

 
Each table entry gives the Pr[Row brand is chosen over the Column brand].  Such a table is 
sometimes called antisymmetric, as element i, j and element j, i must sum to 1.0.  As such, we can 
use the q non-redundant pairs that appear in the lower triangular portion of the table as input to the 
model  
 
Another point is that there are two different ways to collect data.  If the brands are relatively 
confusable, you can collect data using a single subject.  Otherwise, the proportions that appear in 
the table are aggregated over a sample of individuals.   
 
As before, we will assume that the process of judgment of a particular brand, such as brand i, leads 
to an output, call it si.  We further hypothesize that for brand i 
 
 iii ess += . (12.9) 
 
Similarly to what we did before in Equation (12.4), we further assume that  
 
 ei ~ N(0, 2

iσ ) with (12.10) 
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 Cov(ei, ej) = σij = rσiσj. (12.11) 
 
We hypothesize that brand i is chosen over brand j whenever si > sj.  This situation, which as 
shown below, bears a certain resemblance to a two sample t-test:  

  
 
Now we can say that the probability that brand i is chosen over brand j  
 
 pij = Pr(si > sj ) = Pr(si - sj > 0).   
 
So how will we derive that probability?  Turning back a bit in this chapter, recall Equation (12.8) 
which gave us an expression for the Pr(a > 0), namely Φ[E(a) / √ V(a)], assuming that a is a 
normal variate.  In the current case, the role of a is being played by si - sj and so we need to figure 
out E(si - sj) and V(si - sj).  The expectation is simple.   
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since by our previous assumption the E(ei) = E(ej) = 0, and according to Theorem (4.4), the 
expectation of sum is the sum of the expectations.  As far as the variance goes, we can use 
Theorem (4.9) to yield  
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At this point we have all of the pieces that we need to figure out the probability that one brand is 
chosen over the other.  It is  
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Thurstone imagined a variety of cases for this derivation.  In Case I, one subject provides all of the 
data as we have mentioned before.  In Case II, each subject judges each pair once and the 
probabilities are built up across a sample of different responses.  In Case III, r is assumed to be 0 
(or 1, it doesn’t matter), and in Cases IV and V all of the variances are equal – exactly in Case V 
and approximately in Case IV.   

12.4 Estimation of the Parameters in Thurstone’s Case III:  Least Squares and ML 
 
We will continue assuming Case III, meaning that each brand can have a different variance, but 
the correlations or the covariances of the brands are identical.  By convention we tie down the 
metric of the discriminal dimension, s, by setting 1s = 0 and 2

1σ = 1.  We will now look at four 
methods to estimate the )1t(2 −  unknown parameters in the model, namely, the 

values .,,,,s,,s,s 2
t

2
3

2
2t32 σσσ LL  These methods are unweighted nonlinear least squares, 

weighted nonlinear least squares, modified minimum χ
2 

and maximum likelihood.  Unweighted 
nonlinear least squares begins with the observation that with the model,  
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we can use the inverse normal distribution function, )(1 ⋅Φ− on both sides.  To understand what Φ

-1
 

does, lets remember what the Φ function does – remember that Φ is the standard normal 
distribution function.  For example, Φ(1.96) = .975, and Φ(0) = .5. If Φ takes a z score and gives 
you the probability of observing that score or less, Φ

-1
 takes a probability and gives you a z score.  

So Φ
-1
(.975) = 1.96, for example.  What this means is that if we transform our choice probabilities 

into z scores, we can fit them with a model that looks like 
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where ijẑ is the predicted z score that corresponds to the choice that brand i is chosen over brand j.  
Now of course we have a string of such z scores, one for each of the q unique pairs,  
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In unweighted nonlinear least squares we will have as a goal the minimization of the following 
objective function –  
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where the summation is over all q unique pairs of brands.  This technique is called unweighted 
because it does not make any special assumptions about the errors of prediction, in particular, 
assuming that they are equal or homogeneous.  In general, this assumption is not tenable when we 
are dealing with probabilities, but this method is quick and dirty and works rather well.  We can 
use nonlinear optimization (see Section 3.9) to pick the various 2

ii ands σ values which are 
unknown a priori and must be estimated from the sample.  We do this by picking starting values 
for each of the unknowns and then evaluating the vector of the derivative of the objective function 
with respect to each of those unknowns.  We want to set this derivative vector to the null vector as 
below,   
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but we must do this iteratively, beginning with starting values and using these to evaluate the 
derivative.  The derivative, or the slope, lets us know which way is “down”, and we step off in that 
direction a given distance to come up with new, improved estimates.  This process is repeated 
until the derivative is zero, meaning that we are at the bottom of the objective function, f.   
 
The next approach also relies on nonlinear optimization and is called weighted nonlinear least 
squares, or in this case, it is also known as Minimum Pearson χ2, since we will be minimizing the 
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classic Pearson Chi Square formula.   We will not be transforming the data using )(1 ⋅Φ− .  Instead, 
we will leave everything as is, using the model formula 
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Our goal is to pick the 2

ii theands σ so as to minimize  
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which the reader should recognize as the formula for the Pearson Chi Square with ijp̂n  a different 
way of writing the expected frequency for cell i, j.  Note that in the above formula, the summation 
is over all off-diagonal cells and that pji = 1 – pij and of course .p̂1p̂ ijji −=  As an alternative, we 
can utilize matrix notation to write the objective function.  This will make clear the fact that  
minimum Pearson Chi Square is a GLS procedure as discussed in Section 6.8, although in the 
current case our model is nonlinear.  Now define  
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Note also that for each element in p,   
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where n is the number of observations upon which the value pij is based.  Using this information, 
we can create a diagonal matrix V, placing each of the terms n)p̂1(p̂ ijij − on the diagonal of V in 
the same order that we placed the pair choice probabilities in p and .p̂  In that case we can say  
 
 V(p) = V.   (12.18) 
 
Now we will minimize  
 
 )ˆ()ˆ(ˆ 12 ppVpp −′−=χ −  (12.19) 
 
which is equivalent to the previous equation for Chi Square, and which is a special case of 
Equation (6.23).  This technique is called weighted nonlinear least squares so as to distinguish it 
from ordinary, or unweighted, least squares.  Also, remember that the elements in ,p̂ that is, the 

predicted pair choice probabilities, are nonlinear functions of the unknowns, the .ands 2
ii σ  For 

this reason we would use the nonlinear optimization methods of Section 3.9 here as well.   
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A third method we have of estimating the unknown parameters in the Thurstone model is called 
Modified Minimum χ2 or sometimes Logit χ2.  In this case the objective function differs only 
slightly from the previous case, substituting the observed data for the expectation or prediction in 
the denominator:  
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This tends to simplify the derivatives and the calculations somewhat, but perhaps is not as 
necessary as it once was when computer time was more expensive than it is today.  
 
Before we turn to Maximum Likelihood Estimation, it could be noted here that we might also use 
a Generalized Nonlinear Least Squares approach that takes into account the covariances between 
different pairs (Christoffersson 1975, p. 29) 
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where pijkl is the probability that a subject chose i over j and k over l.  These covariances could be 
used in the off-diagonal elements of V.   
 
Finally, we turn to Maximum Likelihood estimation of the unknowns. Here the goal is to pick the 

2
ii theands σ so as to maximize the likelihood of the sample.  To begin, we define  
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i. e. the fij are the frequencies with which brand i is chosen over brand j.  We also note that  
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We can now proceed to define the likelihood of the sample under the model as 
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Note that with the two multiplication operators, the subscripts i and j run through each unique pair 
such that j > i.  The log likelihood has its maximum at the same place as the likelihood.  Taking 
logs on both sides leads to  
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which is much easier to deal with, being additive in form rather than multiplicative.  Note here that 
we have used the rule of logarithms given in Equation (3.1), and also the rule from Equation (3.3).  
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The expression L0 gives the log likelihood under the model, assuming that the model holds.  The 
probability of the data under the general alternative that the pattern of frequencies is arbitrary is  
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Analogously to L0, define LA as ln(lA).  In that case  
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Now we would need to figure out the derivatives of 2χ̂ with respect to each of the unknown 

parameters, the ,ands 2
ii σ and drive those derivatives to zero using nonlinear optimization as 

discussed in Section 3.9.  When we reach that point we have our parameter estimates.   
 
Note that for all of our estimation schemes; unweighted least squares, weighted least squares, 
modified minimum Chi Square, and  Maximum Likelihood; we have q independent probabilities [t 
(t – 1) / 2] and 2 (t – 1) free parameters.  The model therefore has q – 2 (t – 1) degrees of freedom.   

12.5 The Law of Categorical Judgment 
 
In addition to paired comparison data, Thurstone also contemplated absolute judgments, that is, 
when subjects assign ordered categories to objects without reference to other objects.  For 
example, we might have a series of brands being rated on a scale as below,  
 

Like it a lot – Like it a little bit – Not crazy about it – Hate it 
[ ]                    [ ]                           [ ]                             [ ]  

  
which is a simplified (and I hope marginally whimsical) version of the ubiquitous category rating 
scale used in thousands of marketing research projects a year.  We assume that the psychological 
continuum is divided into four areas by three thresholds or cutoffs.  In general, with a J point scale 
we would have J – 1 thresholds.  We will begin with the probability that a subject uses category j 
for brand i.  We can visualize our data as below:  
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The probabilities shown above represent the probability that a particular brand is rated with a 
particular category.  However, we need to cumulate those probabilities from left to right in order 
to have data for our model.  The cumulated probabilities would look like the table below.    
 

Brand 1 .20 .50 .70 1.00 
Brand 2 .10 .20 .80 1.00 
Brand 3 .05 .15 .30 1.00 

 
Define the jth cutoff as cj.  We set c0 = -∞ and cJ = +∞.  We can then estimate values for c1, c2, ···, 
cJ-1.  These cumulated probabilities are worthy to be called the pij and they represent the 
probability that brand i is judged in category j or less, which is to say, to the left of cutoff j.  Our 
model is that each brand has a perceptual impact on the subject given by  
 
 iii ess += with 
 
 ei ~ N(0, σ2) . 
 
In that case  
 
 .]0scPr[]csPr[p̂ ijjiij >−=<=  (12.26) 
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But we have already seen a number of equations that look just like this!  The probability that a 
normal random variable is greater than zero, Equation (12.8), has previously been used in the Law 
of Comparative Judgment.  That probability, in this case of absolute judgment, is given by 
 
 [ ].scp̂ iijij σ−Φ=  (12.27) 
 
The importance of how to model categorical questionnaire items should be emphasized here.  
Such items are often used in factor analysis and structural equation models (Chapters 9, 10 and 11) 
under the assumption that the observed categorical ratings are normal. On the face of it, that would 
seem highly unlikely given that one of the assumptions of  the normal distribution is that the 
variable is continuous and runs from -∞ to +∞!  In the Law of Categorical Judgment, however, the 
variables si behave exactly that way.  What's more, one can actually calculate the correlation 
between two Thurstone variables using what is known as a polychoric correlation and model 
those rather than Pearson type correlations.    

12.6 The Theory of Signal Detectability 
 
The final model to be covered in this chapter is another Thurstone-like model, but one invented 
long after Thurstone’s 1927 paper.  In World War II, Navy scientists began to study sonar signals, 
and more germane to marketing, they began to study the technician's response to sonar signals.  
Much later, models for human signal detection came to be applied to consumers trying to detect 
real ads that they had seen before, interspersed with distractor ads never shown to those 
consumers.   
 
The theory of signal detectability (TSD) starts with the idea that a detection task has two distinct 
components.  First, there is the actual sensory discrimination process, the resolving power if you 
will, of the human memory or the human senses being put to the test.  This is related to our 
physiology, our sensitivity as receivers of the signal in question, and the signal-to-noise ratio.  
Second, there is a response decision involved.  This is not so much a sensory issue as a cognitive 
one.  It is related to bias, expectation, payoffs and losses, and motivation.  For example, if you 
think you hear a submarine and it turns out you are wrong, the Captain may make you peel a crate 
of potatoes down in the mess hall.  However, if you don’t think that the sound you heard was a 
submarine and it turns out to have been one, you and the Captain will both find yourselves in 
Davy Jones’ Locker, if you don’t mind the nautical allusion.  Given a particular ability to actually 
detect the sign of a sub, you might be biased towards making the first error and not making the 
second one.  The TSD is designed to separate this response bias from your actual ability to detect 
subs.   
 
Returning to our group of consumers being asked about ads they have seen, there are a number of 
ways to collect data.   Assume that they have seen a set of ads.  You are now showing them a 
series of ads which include the ads that they have seen along with some new ones that were never 
shown. Obviously, not including distractor ads is a little bit like giving a True/False test with no 
false items.  You can ask them to say Yes or No; I saw that ad or I didn’t.  This is known as the 
Yes/No Procedure.  You can also ask them on a ratings scale that might run from “Very Sure I 
Have Not Seen This Ad” on the left to “Very Sure I Have Seen This Ad” on the right.  This is 
known as the Ratings Procedure.  Finally, you can give them a sheet of paper with one previously 
exposed ad on it, and n - 1 other ads never before seen.  Their task would be to pick the 
remembered ad from among the n alternatives, a procedure known as n-alternative forced choice, 
or n-afc for short.  These procedures, and TSD, can be used for various sorts of judgments: 
Same/Different, Detect/No Detect, Old/New, and so forth.  At this point, we will begin discussing 
the Yes/No task.  The target ad that the consumer has seen will be called the signal, while the 
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distractor ads will be called the noise.  We can summarize consumer response in the following 
table: 
  

  Response 
  S N 

S Hit Miss Reality N False Alarm Correct Rejection 
 
Here the probability of a Hit plus the probability of a Miss sum to 1, as do the False Alarm and 
Correct Rejection rates.  The consequence of a Yes/No trial is a value on the evidence continuum.  
The Subject must decide from which distribution it arose: the noise distribution or the distribution 
that includes the signal.  We can picture the evidence distribution below.  
 

  
 
The x axis is the consumer's readout of the evidence to the consumer that the current trial contains 
an ad that they did indeed see.  However, for whatever reason, due to the similarity between some 
target and some distractor ads, or other factors that could affect the consumer's memory, some of 
the distractor ads also invoke a relatively high degree of familiarity.  The subject’s task is difficult 
if the two distributions overlap, as they do in the figure.  The difference in the means of the two 
distributions is called d′.  The area to the right of the threshold for the Signal + Noise distribution, 
represented by lines angling from the lower left to the upper right, gives you the probability of a 
Hit, that is the Hite rate or HR.  The area to the right of the Noise distribution gives you the False 
Alarm rate, or FAR.  In the Figure, this is indicated by the double cross-hatched area.  For noise 
trials we have  
 
 exx n +=  
 
and for signal + noise trials  
 
 dexx s ′++=  
 
where the parameter d′ represents the difference between the two distributions.  We will assume 
that  
 
 e ~ N(0, σ2)  
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and we fix x = 0 and σ
2
 = 1.  Define the cutoff as c.  Then  

 
 HR = Pr [Yes | Signal] = Pr(xs > c) (12.28) 
 
 = Pr (xs – c > 0). 
 
From Theorem (4.4) we can show that  
 
 E(xs – c) = d′ - c 
 
and from Equation (4.8) that 
 
 V(xs – c) = σ

2
 = 1  

 
so that 
 
 HR = Φ(d′ - c) (12.29) 
 
from Equation (12.8).   As far as noise trials go,  
 
 FAR = Pr [Yes | Noise] = Pr(xn > c) (12.30) 
 
 = Pr [xn – c > 0]  . 
 
Since  
 
 E(xn – c) = -c 
 
and  
 
 V(xn – c) = σ2 = 1, 
 
we deduce that the 
 
 FAR = Φ (-c) . (12.31) 
 
We can therefore transform our two independent data points, the HR and the FAR, into two TSD 
parameters, d′ and c.  We can not test the model since we have as many parameters as independent 
data points.  In order to improve upon this situation, we now turn to the Ratings procedure.   
 
With ratings, we use confidence judgments to supplement the simple Yes/No decision of the 
consumer.  The picture of what is going on under the ratings approach appears below; 
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Just as we did in Section 12.5 with the Law of Categorical Judgment, we cumulate this table, 
which results in a stimulus-response table looking like  
  

Signal .30 .60 .80 1.00 
Noise .20 .30 .70 1.00 

 
Each of the J-1 cutoffs, the cj, defines a Hit Rate (HRj) and a False Alarm Rate (FARj).  Plotting 
them yields what is known as a Receiver Operating Characteristic, or ROC.  Our pretend example 
is plotted below:  
 

Very sure 
noise 

Very sure 
signal noise signal 

Signal 
Noise 

.30         .30  .20      .20 

.20         .10  .40      .30 
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The shape of the ROC curve reveals the shape of the distributions of the signal and the noise.  If 
we used z score coordinates instead of probabilities, the ROC should appear as a straight line.  
This suggests that we could fit the ROC using unweighted least squares.  We will follow up on 
that idea shortly, but for now, let us review the model.  For the Hit Rate for cutoff j we have  
 
 HRj = Pr[xs – cj > 0] 
 
 = Φ [(d′ - cj) / σs] (12.32) 
 
while for noise trials we have  
 
 FARj = Pr[xn – cj > 0] 
 
 = Φ (- cj) (12.33) 
 
Now we have 2·(J – 1) probabilities with only J + 1 parameters: d′, ,2

sσ c1, c2, ···, cJ-1.  Of course, we 
could use weighted least squares or maximum likelihood.  Or we could plot the ROC using z 
scores and fit a line.  In that case, the equation of the line would be  
 

 

.Z1d

ZdẐ

FAR
s

FAR
s

n
HR

σ
+′=

σ
σ

+′=

 

 
We close this chapter with just a word about the n-afc procedure.  You can run this technique 
either sequentially or simultaneously.  In either case, the consumer is instructed to pick exactly 
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one out of the n alternatives presented.  There are no criteria or cutoffs in play in this procedure.  
According to the TSD, the percentage correct can be predicted from the area under the ROC curve.  

12.7 Functional Measurement 
 
We wrap up this chapter with a quick overview of what is known as functional measurement.  We 
started the chapter talking about the relationship between the physical world and the mental 
impressions of that world.  To round out the picture, after the sense impressions are transformed 
into internal stimuli, those stimuli may be combined, manipulated, evaluated, elaborated or 
integrated by the consumer into some sort of covert response.  Then, this covert response is 
transformed into an observable behavior and voila, we have data to look at!  A diagram will 
facilitate the explanation of the process:  
 

  
 
On the left, the inputs are transformed into mental events, we can call them discriminal values by 
the function V(·).  In the case of physical input, V(·) is a psychophysical function.  In the case of 
abstract input, we can think of V(·) as a valuation function.  Then, the psychological or subjective 
values are integrated by some psychological process, call it I(·), to produce a psychological 
response.  This might be a reaction to an expensive vacation package that goes to a desired 
location, or a sense of familiarity evoked by an ad.  Finally, the psychomotor function M(·) 
transforms the mind's response into some overt act.  This could be the action of putting an item in 
the shopping cart, or checking off a certain box of a certain questionnaire item.  With the help of 
conjoint measurement, certain experimental outcomes allow all three functions to be ascertained.   
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