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Chapter 11: Exploratory Factor Analysis 
 
Prerequisites: Chapter 9, Sections 3.5 - 3.8 

11.1 Some Comments on the History of Factor Analysis 
In this chapter we are going to cover a set of techniques known as Exploratory Factor Analysis.  
Originally, these techniques were simply known as factor analysis, but when Confirmatory Factor 
Analysis was invented, the word "Exploratory" was added so as to differentiate the two types of 
factor analysis.  At this point we will be briefly reviewing the basic factor analysis model.  The 
derivation of that model is done with more detail in Chapter 9.  The difference between 
exploratory and confirmatory analyses is partly stylistic.  For one thing, in exploratory analysis it 
is traditional to use a correlation matrix instead of a covariance matrix.    In that case, the model 
specifies that  
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Using Theorem (4.9) we can easily show that  
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Defining E(ηη′) = V(η) = Ψ, E(εε′) = V(ε) = Θ, and knowing that the unique factor vector ε is 
independent of the common factors in the vector η, we can conclude that  
  
 .ˆ ΘΛΨΛR +′=  (11.2) 
 
Thus the presence of unmeasured variables can be revealed by a particular structure in the 
observed correlation matrix.  There are a variety of ways of uncovering the structure revealed in 
Equation (11.2), many of which were invented long before computers.  In general, there are two 
steps involved in doing this.  In the first step, the factors are extracted, but in an arbitrary way 
where the regression weights in Λ are generally not interpretable.  In a second step, the factors are 
rotated into an orientation that is more interpretable and hopefully in alignment with theoretical 
expectations.  This is all in contrast to the confirmatory approach, where we hypothesize a certain 
alignment of the loadings from the beginning, and test the proposed model.   
 
One of the earliest ways, and still the most popular method of factor extraction, is called Principal 
Factors.  We begin our discussion with that technique.    

11.2 Principal Factors Factor Extraction  
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We will begin with the simplifying assumption that the unobserved factors are z-scores and are 
also uncorrelated.  In that case Ψ = I and the model of Equation (11.2) simplifies to  
 
 R̂ = ΛΛ′ + Θ. 
  
The part of the correlation matrix due to the common factors, call it R*, is given by  
 
 *R̂ = ΛΛ′. (11.3) 
 
The off-diagonal elements of *ˆandˆ RR  are identical since Θ is diagonal.  The Θ matrix must be 
diagonal, being the covariance matrix of the unique factors, and "unique" after all, describes a set 
of independent factors.  However, *ˆandˆ RR do differ on the diagonal.  Whereas R has unities on 
the diagonal, R* has the proportion of the variance of each variable that it has in common with the 
other variables.  This proportion is known as the communality of the variable.  A quick look at R* 
reveals it to appear as below 
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with 2

ih  being the communality of variable i. The goal of principle factors is to extract factors 
from R* in such a way as to explain the maximum amount of variance.  Extracting the maximum 
amount of variance is also the goal of eigenstructure, as discussed in Section 3.5.  Principle 
Factors is a technique that uses the eigenstructure of the R* matrix.  But before we can proceed, 
we have to answer two related questions.   
 
1. What are the values of the ?h 2

i   
2. How many factors are there?   
 
If we knew how many factors there were, we could extract that many eigenvalues and 
eigenvectors from R, reproduce R̂ using the eigenvalues and eigenvectors, then look at the 
diagonal of this reproduced correlation matrix.  Conversely, if we knew what the communalities 
were, we could deduce the number of factors because while the rank (see Section 3.7) of R̂  is p, 
the rank of *R̂ depends on m, the number of factors as can be seen in Equation (11.3). *R̂  is an 
outer product [Equation (1.21)] with a rank no greater than the number of columns of Λ.  
Therefore the number of non-zero eigenvalues of *R̂ would tells us exactly how many factors there 

are.  So which comes first: the chicken in the form of the values of the ,h 2
i  or the egg in the form 

of the number of factors?   
 
Even though this is called exploratory factor analysis, we would normally begin with some notion 
of m, the number of factors.  This notion might come from substantive theory or from an educated 
guess.  Another traditional method is to pick the number of factors based on the number of 
eigenvalues > 1.  The logic here is that since an eigenvalue represents the variance of the factor, if 
a factor does not explain even as much as a single observed variable, it is not really pulling its 
weight. 
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Another approach is to use a so-called Scree Chart.   
 

   
 
Given the Scree Chart above, we would pick m = 3 and extract 3 eigenvalues.  The third one 
represents an inflection point, after which there is not much change.    
 
Even if we start with some determined number of factors, it is good to start off with good 
estimates of the communalities.  Here we take advantage of the fact that the lower bound for the 
communality for a particular variable is the squared multiple correlation, R

2
, introduced in 

Equation (6.21), when that variable is regressed on all the other variables. So we have the 
relationship  
 
 1hR 2

j
2
j ≤≤  (11.4) 

 
where 2

jR is the R2 
value for variable j, chosen as the dependent variable with all other variables 

used as independent variables.  A very simple computational formula for this is  
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11R −=  (11.5) 

 
where rjj

 
is the jth diagonal element of R

-1
, the inverse of the correlation matrix of all the variables.   

 
We are now ready to discuss the steps of the algorithm known as Principal Factors.  We begin 
with the observed correlation matrix, R.  According to Equation (11.4), we then can either use the 
lower bound to the communality, the Squared Multiple Correlation, or use the upper bound, unity.  
In either case, we find the eigenstructure of R*, and then reproduce that matrix using only the m 
largest eigenvalues and their corresponding eigenvectors, i. e.  
 
 XXLR ′=*ˆ . 
 
Here the columns of the matrix X contain the eigenvectors while the diagonal elements of L 
contain the eigenvalues.  Now we need only define  
 
 Λ = XL

1/2
 

 
where the square root of a matrix, L

1/2
 is uniquely identified since L is a diagonal matrix 

containing the eigenvalues on the diagonal and zeroes elsewhere. Remembering the definition of 
the Diag function [Equation (2.13)] of a square matrix, by subtraction we can deduce that  
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 *).ˆ(Diag RIΘ −=  
 
 
Sometimes Principal Factors is iterated using the following steps.   
 
Step 0. Find the m largest roots of R.  Calculate .))((ˆ 2/12/1 ΛΛXLXLR ′=′=  
 
Step 1. Set )]ˆ(diag[* RIRR −−= . 
 
Step 2.  Find the m largest roots of R*, recalculate .))((ˆ 2/12/1 ΛΛXLXLR ′=′=  If R̂ is not 
changing from iteration to iteration, stop.  Otherwise go back to Step 1.   
 
In Step 0 we can start with unities on the diagonal of R and the process will converge down to 
the ,h 2

j or you start with squared multiple correlations and converge up.   

11.3 Exploratory Factor Analysis Is a Special Case of Confirmatory 
 
Before the maximum likelihood approach to factor analysis was invented by Lawley (summarized 
in Lawley and Maxwell 1963), factor analysis existed as a purely descriptive technique.  Now we 
know that exploratory factor analysis is a special case of the confirmatory model discussed in 
Chapter 9.  To implement the special case, we fix the absolute minimum number of parameters 
necessary to identify the model.  The absolute minimum number of parameters that must be fixed 
to identify an m-factor model is m

2
.  These need to be arranged in the Λ and Ψ matrices in a 

certain way, however.  If we set Ψ = I this fixes
2
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restrictions.  If you have no hypotheses, other than a hypothesis as to the number of factors, m, 
these restrictions may be arbitrarily placed in Λ with column i getting i - 1 zeroes at the top.  For 

example, with m = 3 factors we have V(η) = Ψ = I which imposes
2

)13(3 + = 6 restrictions.  We 

need 3
2

)13(3
=

− more restrictions to make m
2
 = 9 all together.  In that case we can arbitrarily build 

Λ as 
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The 2χ̂ tests the null hypothesis that Σ stems from 3 factors vs. the alternative that Σ is arbitrary, or 
it stems from as many factors as there are variables, p.  Once dimensionality has been statistically 
determined, rotation may generate hypotheses (for later confirmation) regarding the nature of the 
dimensions.  If there are more than m2 fixed constants rotation is not possible and meaning that the 
factor space has been restricted.   

11.4 Other Methods of Factor Extraction 
 
In addition to ML factor analysis, we have an approach called MINRES which seeks to minimize 
the residual or the difference between the predicted correlations in R̂ and the actual correlations in 
R.  The objective function is then  
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The reader will note that the component ∑ λλ
m

l
kljl is a scalar version of the inner product of the jth 

and kth rows of Λ, since it would be those two rows used to reproduce element rjk in Equation 
(11.3).   
 
Canonical factoring maximizes the canonical correlation (see Section 8.18) between the factors 
and the variables while Image factoring and Alpha factoring are based on the notion that items 
measuring any particular factor are sampled from some population of items that might be chosen.  
These techniques are discussed in Harman (1976). 

11.5 Factor Rotation 
 
After the factors have been extracted, whether this be by ML Factor Analysis, Principal Factors, or 
one of the other techniques, it is possible to rotate the factor axes into a position of possible higher 
theoretical value.  That this is possible can be easily proven by noting that the extraction of factors 
based on Equation (11.3) is essentially arbitrary.  If I define an orthonormal matrix C such that 
CC′ = I, I can always create a new loading matrix, call it ,~Λ  as in  
 
 ΛCΛ =

~   
 
so that  
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which of course yields the original Equation (11.3).  An orthonormal matrix like C imposes a rigid 
rotation on axes which leaves angles and distances between points unchanged.   The geometry of 
the situation might look like the figure below which shows two variables defined in a space with 
two factors.   

  
 
Looking at the Figure, the length of the vector jẑ that corresponds to the (predicted) variable j is 

.hˆˆ 2
j

k
jkjj =λ=′ ∑zz  Our factors are at right angles, which is to say uncorrelated.  At this 

point, assuming we have extracted those two factors using Principal Factors, the position of the 
axes is in the arbitrary orientation of maximal variance.  The loadings are now the coordinates of 
the variables on the axes formed by the factors.  The predicted correlation between the two 
variables is  
 
 .coshhr̂ 2

2
2
112 θ=  (11.8) 

 
In the next figure, we complicate things somewhat by having four variables appear. 
 

  
 
All variables load on all original axes, η1 and   η2.  However, the loadings or coordinates on the 
new axes, 1

~η and 2
~η will be different.  Two of the variables will load heavily on 1

~η while the other 
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two will load on .~
2η   The cross loadings will be minimal which creates a much simpler Λ matrix 

in which the interpretation of the η's will be facilitated.  In order to rotate the original axes into the 
new positions, we will need a bit of trigonometry.  Below we have labeled all of the angles 
between each original axis and each new one:  
 

   
We can construct the orthonormal rotation matrix C such that  
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and even though θ12 is "reversed", since cos θ = cos (360 - θ), it comes out the same.  Note that the 
first subscript refers to the new axis and the second to the old.  This concept works in spaces of 
arbitrary dimensionality.  So how do we pick the angle of rotation?  What constitutes a good 
orientation of the axes with the variables?  What we are looking for is called simple structure.  
This is an idea due to Thurstone [summarized in Thurstone (1935)] who came up with three 
principles.   
 
1. Each row of Λ should have at least one zero. 
2. Each column of Λ should have at least m zeroes.   
3. For every pair of columns of Λ there should be at least m variables with zeroes in one column 

but not in the other.   
 
The most famous implementation of rotation to simple structure is Kaiser's Varimax procedure 
that maximizes the variance of the squared loadings within each column.  The original formula, 
sometimes still called raw varimax, is to pick the rotation that maximizes the variance of the 
squared loadings in each column j of Λ 
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The formula widely used today (see Harman, 1976, pp. 290-1) weights each factor by the inverse 
of its total communality, but conceptually it follows the lines of the above equation.  Other 
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approaches maximize the variance within each row (Quartimax), or equally between rows and 
columns (Equimax).   

11.6 Oblique Rotation 
 
Of course nothing guarantees that the factors that we see in marketing will be orthogonal.  In order 
to create a rotation like the one pictured below, 

  
we could use a transformation matrix  
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which would take the old axes into a new set.  Note that in this case CC′ ≠ I. The elements of C 
are direction cosines, and the sum of cross-products of direction cosines gives the cosine of the 
angle between the two vectors which according to Equation (11.8) is the same thing as a 
correlation.  Thus we have for the correlations between the new factors:  
 
 CCΨ ′=

~  (11.10) 
 
The new loadings, in ,~Λ  can be inferred from the fact that since 
 
 ΘΛΛR +′=ˆ  
 
it must also be the case that 
 
 ΘΛCCΛ +′′=

~~R  
 
so that obviously ,~CΛΛ =  which then implies further that C

-1
Λ = .~Λ   When factors are 

orthogonal, and we have standardized both the variables and the factors to be z-scores, the 
loadings in the Λ matrix can also be interpreted as correlations between the variables and the 
factors.  When we have non-orthogonal factors, this is no longer so. We can, however, calculate 
these correlations, known as the factor structure, using  
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 .~ΨΛS =  (11.11) 
 
There are a number of analytic techniques available to perform oblique rotation including 
Oblimax, Quartimin, Oblimin and Promax. 
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