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Chapter 10: Structural Equation Models 
 
Prerequisites: Chapter 9 

10.1 The Basic Structural Equation Model  
  
In this chapter we are going to look at models where the theme is cause and effect. Unlike 
regression, these models are explicitly formulated as causal models, not just predictive models.  
We will also be using a notation that is quite similar to that used in Chapter 9 for Confirmatory 
Factor Analysis, which is to say that we will have a column vector, y, containing p dependent 
variables.  The vector y is understood to represent an arbitrarily chosen observation from the 
population, maybe the ith.  We will have a similar situation with the vector x that is a q by 1 
column vector.  In SEM (Structural Equation Model) terms, we say that y contains the endogenous 
variables and x contains the exogenous variables.   An endogenous variable is one that appears at 
least once as the dependent variable in an equation.  On the other hand, variables that do not 
appear on the left hand side are exogenous, or "given."  In other words, all variances of, and 
covariances between, exogenous variables are determined outside of the system.  They are not at 
issue.  The variances and covariances of the endogenous variables are being modeled as a function 
of the exogenous variables.  The basic model looks like  
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 .ζΓxByy ++=  (10.1) 
 
So we have p simultaneous equations.  Note that for each of the causal parameters, the γ’s and the 
β’s, the subscripts follow the same pattern.  The first subscript refers to the equation, in other 
words the y variable which is the effect.  The second subscript refers to the cause.   
 
The p by p B matrix contains the coefficients of the regressions of y variables on other y variables 
with 0’s on the diagonal which implies that a variable cannot cause itself.  The p by q matrix Γ 
contains the coefficients of the y’s on the x’s.  The error vector, ζ, is p by 1.  These errors are 
different than factor analysis errors, they represent errors-in-equations, in the way that these 
equations are specified.  Thus they are also called specification errors.  
 
In order to get to a point where we can estimate the model, we need to add some assumptions.  To 
start off innocuously enough, we assume that E(y) = 0 and E(x) = 0, which has absolutely no 
impact on the variances or covariances of these variables [see Equation (4.8)].  We then assume 
that the x and ζ vectors are independent,  
 
 Cov(x, ζ) = 0 (10.2) 
 
which is to say that the covariances between the x’s and the ζ’s consist of a q by p rectangular 
array of zeroes.  We will also need to assume that the determinant 
 
 0|| ≠−BI . (10.3) 
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Now let us define  
 
 V(x) = E(xx′) = Φ   and (10.4) 
 
 V(ζ) = E(ζζ′) = Ψ . (10.5) 
 
Note that we have “reused” the Ψ matrix from Chapter 9.  In confirmatory factor analysis, Ψ was 
used for the factor covariance matrix.  In fact, the use of Ψ as the covariance matrix of the ζ’s is 
actually consistent with its Chapter 9 meaning.  At this point we are ready to deduce what is 
known as reduced form.  Reduced form requires that we solve for the y vector, as below:  
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 eGxy += .              .            (10.6)  
 
The matrices G = (I – B)

-1
Γ and e = (I – B)

-1
ζ are defined merely for convenience, but G does 

highlight the fact that we can go from the structural parameters in B and Γ to the classic regression 
parameters with some algebra.  Of course, that does not prove we can go in the opposite direction!   
 
What is the variance of the y variables?  We can use the reduced form derived above to simplify 
our explanation,   
 
 [ ]))((E)(E ′++=′= eGxeGxyyΣ  
 
 .)(E)(E)(E)(E eeGxeeGxGxGx ′+′′+′+′′=  (10.7)  
 
The 2nd and 3rd terms vanish.  To see this, we look at the 2nd component which is given by 
 
  [ ]{ }′′−=′ − ζBIGxeGx 1)(E)(E  
 
which, using the fact that the transpose of an inverse is the inverse of the transpose [Equation 
(1.40)], and passing the constants in G and (I - B)

-1
 through the Expectation operator [remember 

Equations (4.5) and (4.6)], is equivalent to  
 
 .)()(E)(E 1−−′=′ BIζxGeGx  
 
Here we note that E(xζ′) that appears immediately above is another way to express the Cov(x, ζ), 
and that covariance must be zero by previous assumption.  The 3rd term is just the transpose of the 
2nd.  What the cancellation of the 2nd and 3rd components in equation (10.7) means is that we end 
up with the following expression for Σ, 
 
 E(yy′) = GE(xx′)G′ + E(ee′) (10.8) 
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At this point we might pause and note the similarity between this expression and it's equivalent for 
factor analysis, Equation (9.3)!  Now, to further flesh out this last equation we need to remember 
that we had previously defined V(x) = E(xx′) = Φ, and V(ζ) = E(ζζ′) = Ψ.  Proceeding along those 
lines we see that 
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How about the covariance between x and y?  That would be  
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The null matrix appears above because we have previously assumed that E(xζ′) = 0 [in equation 
(10.2)],  that is to say the x variables are not correlated with the errors in the equations.  Putting all 
the pieces together,  
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The structure above constitutes H0 and HA: Σ = S is as before in Chapter 9. 

10.2 A Simple Example with Four Variables 
 
At this point I would like you to imagine that we have measured the following four variables:  
 
 
 
 
 
 
 
 
Now let us look at the path diagram for a causal model.  
 

Variable Description 
x1 Perceived Attractiveness of Product 
x2 Perceived Cost of Product 
y1 Intention to Purchase 
y2 Purchasing Behavior 
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There are a few things we might note about this diagram.  As is the tradition with confirmatory 
factor analysis, we usually leave off a label for errors; they are just represented as single headed 
unlabeled arrows.   Covariances, such as the one between x1 and x2, are represented by two-headed 
arrows.  Causal paths are represented by one-headed arrows.  By tradition, the variances of the 
exogenous variables do not appear on path diagrams.   
 
The structural equations for this model are  
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and in matrix terms  
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In addition we need to specify the variances of any variable appearing on the right hand side:  
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Since the x’s are exogenous, their variances and covariances are given, and are estimated by the 
sample values.  Thus they cannot contribute to the falsification of the model.  Counting up all the 
free parameters, we have 1 β, 2 γ’s, 2 ψ’s and 3 φ’s.  There are (4⋅5)/2 = 10 data values, leaving 2 
degrees of freedom for the model.  This can be seen in the path diagram by the fact that there are 
two missing arrows; the arrow that does not appear between x1 and y2, and the arrow not present 
between x2 and y2.  It is actually these two missing arrows that are being tested by the Chi Square 
statistic for this model.  Their absence is what we can falsify using the SEM technique.     

10.3 All y Models 
 
Any model that can be expressed with x and y variables can be expressed with y variables alone.  
Consider the following two sets of equations,  
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 y = By + Γx + ζ 
 
 x = 0y + Ix + 0 , 
 
where the second set of equations, involving the x variables, is present just to create a similarity 
between the x’s and y’s.  In fact, the second set really just sets x = x!  Now define  
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so that we can rewrite the two sets of structural equations  
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We define z, G and A temporarily just to illustrate the point.  The point being that we need only 
one set of variables with one regression coefficient matrix and one variance matrix.  It is most 
convenient to use y, B and Ψ to play these roles.   

10.4 In What Sense Are These Causal Models? 
 
Using Structural Equation models we have the potential to reject the hypothesis H0 that embodies 
the causal model.  Rejecting H0 is a definitive event. If H0 is not rejected, the results are a bit more 
ambiguous.  All we can say in that case is that we have failed to reject the hypothesis.  In other 
words, it is still in contention but by no means can it be considered proven.  In point of fact, there 
are an infinite number of other possible models that could also be true.  H0 is merely among the 
survivors.  To illustrate this point, consider the two causal structures below:  
 

 
 
and  
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y1

y3
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Note that the path diagrams above have been simplified somewhat from the traditional 
conventions.  Both models have one degree of freedom that corresponds to the missing path 
between y2 and y3.  In point of fact, the one degree of freedom, or the restriction implied by that 
degree of freedom, is identical in both cases.  To explore the nature of this restriction, we revisit 
Section 5.8.  Consider the regressions 
 
 y2 = y1 + e2 and  
 
 y3 = y1 + e3. 
 
Both causal diagrams require only that the partial covariance σ23·1 = 0 where σ23·1 is the Cov(e2, e3) 
from the above two regression equations.  Failure to reject does not prove your model. 

10.5 Regression As a Structural Equation Model 
 
Consider a regression model with three independent variables and one dependent variable.  The 
path diagram for this appears below; 

 

 
 
Now let us count up degrees of freedom for the model.  We have six elements in the Φ matrix 
(remember that the variances of the exogenous variables do not appear on a path diagram), there 
are three γ values, and one ψ.  Among the four observed variables there are 2)5(4 = 10 
covariances and variances.  Thus there are exactly as many free parameters as there are data 
points.  In effect, the parameters are just transformations of the data.  We say in this case that the 
model is just identified.  The model does not impose any restrictions on the Σ matrix, which is to 
say that it has 0 degrees of freedom. Now lets look at the multivariate case with multiple 
dependent variables.  For example, below we can see a model with two y variables and three x 
variables: 
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We leave it to the reader to calculate the degrees of freedom in this case and to verify that here 
too, we will end up with a just identified structural equation model.  Regression, whether it is with 
one or more dependent variables, is not falsifiable in the sense of structural equation modeling.  
Regression is not a causal model.   

10.6 Recursive and Nonrecursive Models 
 
At this point we need to learn an important term that unfortunately sounds as if it means the 
opposite of what it actually means.  A recursive system is characterized by V(ζ) = Ψ diagonal, and 
by the fact that it is possible to arrange the y variables so that B is lower (or upper) triangular.  It is 
probably easier to illustrate the concept of a recursivity by referring to its opposite.  Some example 
systems that are non-recursive are shown below.   
 

 
 

and 
 

 
 
Both of these would be called non-recursive.  Generally, non-recursive models can be very 
difficult to estimate using structural equation models.  There are certain specialized econometric 
techniques, discussed in Chapter 17, specially constructed to facilitate these sorts of models.  

10.7 Structural Equation Models with Latent Variables 
 
It is possible to combine the latent variables models of Chapter 9 with the structural equation 
models of this chapter.  In other words, we can have path models between factors.  While we have 
already shown we can always get by with just y-variables, here, if only for notational clarity, we 
will assume we have two sets of variables, an x set and a y set, and therefore we need two 
measurement models,  
 
 y = Λy η + ε (10.10) 
 
    x = Λx ξ + δ . (10.11) 
 
The y-variables are a function of certain latent variables, the η’s, while the x-variables are a 
function of other latent variables, the ξ’s.  The next step would be that we can have structural 
equation models amongst these latent variables as below:  
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    η = Bη + Γξ + ζ  . (10.12) 
 
Needless to say, there are a set of assumptions that we must make before we can use these models.   
These are listed now 
 
 Cov (η, ε) = 0 (10.13) 
 
 Cov (ξ, δ) = 0 (10.14) 
 
 Cov (ξ, ζ) = 0 (10.15) 
 
 Cov (ε, δ, ζ) = 0 (10.16) 
 
 Diag (B) = 0 (10.17) 
 
 | I – B| ≠ 0 . (10.18) 
 
The first two assumptions in equations (10.13) and (10.14) are that the common factors and the 
unique factors are independent.  In the structural equation model, the independent variable and the 
error must be uncorrelated [assumption (10.15)].  Each of the three types of errors are mutually 
uncorrelated [assumption (10.16)] .  The diagonal of the B matrix is a set of p zeroes, and the 
expression (I – B) must be nonsingular, meaning that its determinant cannot be zero so that it can 
be inverted (as is discussed in Section 1.8).   
 
To review, we have now introduced four parameter matrices: Λy which contains factor loadings 
for y variables, Λx which contains loadings for the regression of x variables on their factors, the 
ξ’s, Γ containing regression coefficients for η on ξ, and B with the regression coefficients for η’s 
on other η’s.  To round out the picture, we have four variance matrices.   The variance of all inputs 
must be specified, and that includes  
 
 V(ξ) = Φ, (10.19) 
 
 V(ζ) = Ψ, (10.20) 
 
 V(ε) = Θε  and (10.21) 
 
 V(δ) = Θδ . (10.22) 
 
Our first example involves a longitudinal study in which a group of customers is asked the same 
two items on four different purchase occasions.  These two items are hypothesized to be 
unidimensional.  Here, we have to admit that this is just an illustrative example since any two 
items are unidimensional!  You need more than two items to create a scale, otherwise you are just 
modeling a plain household variety correlation.  But, proceeding anyway, here is the path diagram:  
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Perhaps we are interested in the persistence of the attitude towards the brand over time.  All of the 
variables have been labeled in such a way as to illustrate an all-y model.  The measurement model 
is  
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with the structural model  
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To this we add the variance matrices of ε and ζ, respectively,  
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In the Ψ matrix, the parameter ψ11 is exogenous.   
 
It is important to be able to calculate the degrees of freedom for this or any other model you are 
working on.  The raw data for the model, given that there are eight observed variables, is given by  
the expression 9(8)/2 = 36.  From this we must subtract the four free elements in the loading 
matrix, three β’s, eight elements in Θε and then four elements on the diagonal of Ψ.  This leads to 
15 degrees of freedom.   

10.8 Second Order Factor Analysis 
 
One very beautiful, if rarely applied, model is the second order factor model.  In effect, the factors 
themselves may form a higher order factor.  In other words, if the correlations amongst the factors 
have the right structure, these may be the result of a latent variable.  A path diagram of this model 
appears below:  

 
 
Note that the η’s have their own loadings and their own unique factors.  Here, the variable ξ1 
serves as the higher order factor.  In general terms, the second order factor analysis model can be 
written as  
 
 y  =  Λy η  +  ε  and (10.23) 
 
 η  =  Γ ξ  +  ζ ,        . (10.24) 
 
which the reader will recognize as a special case of a SEM with latent variables.  We can write the 
model more compactly as  
 
 [ ] εζΓξΛy ++= y  . (10.25) 
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We need to assume that Cov(ε, ζ) = 0 and Cov(ξ, ζ) = 0.  Here we also have V(ε) = Θε, V(ζ) = Ψ 
and V(ξ) = Φ.  The variance matrix of y, Σ, takes on a particularly aesthetic form with this model,  
 
 [ ] ε+′+′= ΘΛΨΓΓΦΛy yy)(V   , (10.26) 
 
with the internal part in the brackets being the V(η).  Again, students should make certain they can 
calculate the degrees of freedom for this model.   

10.9 Models with Structured Means 
 
In order to look at means, something that is useful especially when there are multiple groups, we 
need to include a unit vector as an “independent variable” and analyze the raw SSCP matrix [see 
Equation (2.9)] instead of a covariance matrix.  Our model is  
 
 y  =  νy + Λy η + ε (10.27) 
 
 x  =  νx + Λx ξ + δ (10.28) 
 
 η  =  α + B η + Γ ξ + ζ . (10.29) 
 
Now define E(ξ) = κ.  Then  
 
 E(η) = (I - B)-1(α + Γκ), (10.30) 
 
 E(x) = νx + Λx κ and (10.31) 
 
 E(y) = νy + Λy (I – B)-1 (α + Γκ)  . (10.32) 
 
In order to fit this model in the context of a SEM, we need to include a vector of 1’s that we will 
call x0.  It will be the only variable labeled as an x.  For the rest of the real x’s and the y’s, we will 
utilize an all-y model.   For x0 we have  
 
 1 = 1ξ0 + 0  . 
 
For all of the rest of the variables, we have  
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as the measurement model.  The structural equation model looks like  
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The means of the latent variables, the αi, show up in the position usually occupied by the "Γ" 
matrix, which in this case is a vector.   There is a sequence of hypotheses and models that can be 
tested.  If we assume there are two groups, we would start by testing 
 
 H0:  Σ1 = Σ2. (10.35) 
 
Failure to reject this hypothesis implies that we should pool the groups.  At this point any between 
group analysis stops.   
 
  )2(

y
)1(

y0:H ΛΛ =  (10.36) 
 
Failure to reject the hypothesis in Equation (10.36) implies each population has the same factor 
structure.  Otherwise, if you reject this hypothesis, it doesn’t make sense to compare factor means 
across groups because these means correspond to different factors in the two groups.  Therefore if 
we reject the hypothesis of Equation (10.36), between group analysis stops.   
 
 )2(

y
)1(

y0:H νν =  (10.37) 
 
Failure to reject the above hypothesis implies that the items work the same way in each 
population.  If you reject it, between group comparison stops.   
 
 )2()1(

0 :H εε = ΘΘ   
 
There are no consequences of either rejecting or failing to reject the above hypothesis.  However, 
as always, we should seek to end up with the simplest model possible so failing to reject this one 
would be considered positive.   
 
 )2()1(

0 :H αα =  (10.38)  
 
This would ordinarily be considered the key hypothesis.  Do the groups vary on the factor means?  
Finally, we could look at  
 
 )2()1(

0 :H ΨΨ =  (10.39) 
 
which asks whether the groups differ on the factor space.   
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