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Chapter 6: Testing Linear Hypotheses  
 
Prerequisites: Chapter 5 

6.1 The Distribution of the Regression Model Estimator  
 
According to Theorem (4.9), if we have a random vector a such that the variance of a is known, 
V(a) = C, lets say, then we can deduce the variance of any linear combination of a.  Using the 
matrix D′ to create a set of linear combinations, we would have, in that case, V(D′a) = D′CD.  We 
can use this key theorem to deduce the variance of ,β̂ the vector of parameter estimates from the 
regression model, i. e.  
  
 .)(ˆ 1 yXXXβ ′′= −  
 
Looking at the formula for ,β̂ we see that we can apply the theorem with y playing the role of the 
random vector "a", and the premultiplying matrix (X′X)

-1
X′ in its Oscar winning performance as 

"D", creates k linear combinations from y.  We know the variance of y,  
 
 V(y) = V(Xβ + e) = V(e) = σ2I 
 
since y must have the same variance as e.  This is so because adding a constant to a random vector 
does not change the variance of that vector, as is pointed out in Theorm (4.8).  Given that, we can 
apply the theorem of Equation (4.9) such that 
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 (6.1) 

 
To get to the last line we have used a variety of theorems from Chapter 1, including the associative 
property of scalar multiplication [Theorem (1.29)], and the fact that if A = A′, then A-1 = (A-1)′ 
which is presented in Equation (1.40).  Now that we have a formula for the variance of ,β̂ we are 
getting closer to being able to make inferences about β, the population value.  Of course we are 
interested in the population, not just the particular sample that we happened to have observed.  To 
make the leap from the sample to the population we need  to talk about the probability distribution 
of .β̂  Another very important theorem about linear combinations comes next.  Lets assume we 
have a n by 1 random vector a and a constant vector b′.  Then 
 
Central Limit →′ 1nn1 ab  normality as 
  (6.2) 
 ∞→n . 
 
What this Central Limit theorem states is that a linear combination of a random vector tends 
towards normality as n, the number of elements in that vector increases towards infinity.  In 
practice, n need only get to about 30 for this theorem to apply.  What’s more, the theorem in no 
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way depends on the distribution of the random vector a.  To take one extreme example, a might 
contain a series of binary values; 0’s or 1’s; and the theorem would still apply!  Turning back to 
the least squares estimator, ,β̂ if we have a sample size more than 30, we can be fairly confident 

that β̂ will be normally distributed, even if the error vector e, and hence y, are not normally 
distributed.  We can therefore conclude that  
 
 ])(,[N~)(ˆ 121 −− ′σ′′= XXβyXXXβ . (6.3) 
 
It is now time to use a distribution that is applicable when the sample size is less than 30, the t-
distribution (more information can be seen in Section 4.6).  Consider the normally distributed 
scalar q, that is )]q(V),q(E[N~q .  In that case the ratio  
 

 df~
)q(V̂

)q(Eq t− . (6.4) 

 
The subscript df on the t represents the degrees of freedom for the t-distribution, that is the 
effective number of observations used to estimate V(q) using ).q(V̂  More specifically, in the case 

of a particular element of ,β̂  say ,ˆ
iβ we would have  
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We have already determined )ˆ(V iβ in Equation (6.1).  In order to refer to this variance better, let 
us define  
 
 D = (X′X)

-1
 = {dij}.   

 
The superscript notation, used with the element dij, is often used to describe the elements of the 
inverse of a matrix.  Note that dii is the ith diagonal element of (X′X)

-1
.  Now we are in a position 

to say that  
 
 .d)ˆ(V ii2

i ⋅σ=β  (6.6) 
 
All that remains to construct our t is to figure out how to estimate σ

2
.   This is done using  
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i ds)ˆ(V̂ ⋅=β . (6.8) 
 
Instead of using Equation (6.7) to calculate s

2
, we can also use the covariance approach (see 

Equation (5.25):  
 



66  Chapter 6 

 xyxxyxyy
2 ss sSs−= . 

 
In addition to being the empirical estimate of the variance of the ei, s

2
 is also the variance of y | X, 

that is, y conditional on the observed values of X.  

6.2  A 1 - α Confidence Interval 

Finally, we are ready to make statements about the population values of .β̂  There are two broad 
ways of doing this.  The first, which will be given immediately below, is called a confidence 
interval.  The second will be covered in the next section and involves all-or-nothing decisions 
about hypotheses.  A 1 - α confidence interval for the element iβ̂ is given by  
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which means that  
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where tα/2, n-k is the tabled t-statistic with n - k degrees of freedom such that Pr(t ≥ tα/2) = α/2.  The 
upshot is that, with a probability of 1 - α, we can capture the population value of a parameter of 
interest between the minus and plus values of the confidence interval.  The benefit of this 
procedure is that we can pick α  a priori according to our tolerance for risk.  Of course picking a 
smaller value of α (which reduces the risk of missing the target, βi) implies a larger value of t in 
the formula which in turn expands the distance between the left and right end points of the 
interval.   
 
Despite the elegance of confidence intervals, marketers do not usually use them.  Marketing theory 
rarely provides us with enough information to motivate us to look at particular values of the βi.  At 
best, it seems our theories may be capable of letting us intuit the sign of βi.  We can then decide if 
we were right about our intuition using a yes or no decision, a procedure that we will now address.   

6.3 Statistical Hypothesis Testing 
 
Questions about marketing theory, as well as practitioner issues, that are explored using samples, 
are often solved through the use of statistical hypothesis testing.  For example, we might be 
interested in testing the hypothesis  
 
 H0: βi = c 
 
where c is a constant suggested by some a priori theory.  It is important to note that the entire 
logical edifice that we are going to build in this section is based on the presumption that this 
hypothesis was indeed specified a priori, that is to say, specified before the researcher has looked 
at the data.  In that case we need to create a mutually exclusive hypothesis that logically includes 
all possible alternative hypotheses.  Thus, between the two hypotheses we have exhaustively 
described the outcome space; all outcome possibilities have been covered.  Given the hypothesis 
above, the alternative must be  
 
 HA: βi ≠  c. 
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We need to acknowledge that the two hypotheses are not symmetric.  For one thing, Ho is specific 
while HA is more general.  You will note that H0 is always associated with an equality.  For 
another thing, the two sorts of mistakes that we can make, namely, believing in H0 while HA is 
actually true; vs. believing in HA while H0 is true; are not symmetric.  Part of the definition of H0 
is that it is the hypothesis that we will believe in by default, unless the evidence is overwhelmingly 
against it.  In some cases we can define H0 for its “safety.”  That is, if we have two mutually 
exclusive hypotheses, and falsely believing in one of them, even though the other is true, is not so 
damaging or expensive, we would want to pick that one as H0.   
 
We now need to summarize the evidence for and against H0 and HA.  Here is where the t statistic 
comes in.  We will assume that H0 is true.  In that case,  
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We can now evaluate the probability of this evidence assuming that H0 is true by simply looking 
up the probability of t̂ based on the t-distribution.  Specifically, we reject H0 if  
 
 ,t| ˆ| k-n /2,t α>  (6.12) 
 
where tα/2, n-k is the tabled t-statistic with n - k degrees of freedom such that Pr(t ≥ tα/2) = α/2.  The 
value α can once again be chosen a priori according to one’s tolerance for the risk of falsely 
rejecting H0, an error often referred to as being of Type I.  The value α  is divided in two simply 
because HA has two tails, that is to say, it is the nature of H0 that it can be wrong in either of two 
directions.   
 
In some sorts of hypotheses we do not need to divide α by two.  If we have H0: βi ≥ c, which 
implies an alternative of HA: βi < c, there is only one direction or tail in which H0 can be wrong.  
In that case we reject H0 if  
 
 k-n ,tt α> ̂ . (6.13) 
 
The inequality obviously reverses direction if H0 involves a “≤”.  Note that one way or the other, 
H0 allows the possibility of an equality.  The logic of hypothesis testing is based on H0.  It is the 
only hypothesis being tested.  Rejecting H0 we learn something, we can make a statement about 
the population.  Otherwise we have simply failed to reject it and we must leave it at that.   
 
Generally speaking, those writing articles for marketing journals tend to automatically pick α = 
.05.  It’s a social convention, but the arbitrariness of “.05” should not obscure the value we get out 
of picking some value a priori.  In some practitioner applications the two possible types of errors 
can be assigned a monetary value and the choice of α can be optimized.   

6.4 More Complex Hypotheses and the t-statistic 
 
It is possible to look at more complex questions, for example is β1 = β2?  We will write the 
question as a linear combination of the β vector: 
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We can create a t-test using the same technique as before as long as we can figure out the 
denominator of the t.  The theorem we discussed at the beginning of the chapter, Theorem (4.9) 
which lets us derive the variance of a linear combination of a random variable can guide us once 
again:  
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By substituting the empirical estimate, s2 for the population value σ2, we get the formula for the t 
that lets us test the linear hypothesis H0 against the alternative, HA: a′β ≠  c 
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As before, we would reject H0 if kn,2/

ˆ| −α> t|t .   
 
We might note that the basic t-test discussed in the previous section to test H0: βi = 0 is a special 
case of this procedure with [ ].001000 LL=′a  In general, if you can quantify a 
hypothesis as a single linear combination, so that the right hand side is a scalar and there is just 
one equal sign, you can test it with a t-test.  But we can test even more complex hypotheses than 
these, and that is the subject of the next section, Section 6.5. 

6.5 Multiple Degree of Freedom Hypotheses 
 
We will now look at more complicated hypotheses that require more than a single linear 
combination.  Where before our hypothesis was represented in a′, now we will have a series of 
hypotheses in the q rows of the hypothesis matrix A.  We can simultaneously test all q of these 
hypotheses,  
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 (6.16) 

 
As an example, suppose we wanted to simultaneously test that β2 = 0, and that β3 = 0, or more 
concisely, that β2 = β3 = 0.  We can use an A matrix as below,  
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The flexibility of linear hypotheses cannot be exaggerated.  Suppose we want to test that a set of β 
coefficients are equal; β1 = β2 = β3.  That can be coded into the A matrix as 
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To test these sorts of hypotheses, we will be using the F distribution, which is more general than 
the t.  In fact, an F with one degree of freedom in the numerator is equivalent to a t squared.  (This 
is briefly discussed in Section 4.7.)  An F is a ratio of variances.  Under the null hypothesis, both 
the numerator and the denominator variances measure the same thing so that the average F is one.  
In the case of the linear hypothesis H0: Aβ = c, the numerator is the variance attributable to the 
hypothesis.  In this context the variance is called a mean square - in other words it is an average 
sum of squares.  To calculate the sum of squares that will be used for this mean square, we have:  
 
 [ ] ).ˆ()()ˆ(SS

11
H cβAAXXAcβA −′′′−=

−−  (6.17) 
 
Since β is a column vector, and this is a single quadratic form, SSH is a scalar.  For this to work the 
A matrix, which is q by k, has to have q independent rows, and certainly q must be less than or 
equal to k.  Otherwise, the matrix within the brackets will not be capable of being inverted.  Given 
that A has q independent rows, we can set up the ratio 
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Error
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 (6.18) 

 
which can be used to test the hypotheses embodied in the A matrix.   
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Typically a variance is an average sum of squares divided by "n - 1" which represents the degrees 
of freedom of that variance.  In this case, in the numerator, the average is being taken over the q 
rows of A.  In other words, the number of observations - the degrees of freedom - is q.  The 
denominator, which the reader should recognize as the variance of the ei, called s2, has n – k 
degrees of freedom.  (We remind you that k represents the number of other parameters estimated 
in the regression model.  We have already estimated values for theβ vector.) leaving n – k 
observations for estimating s2.   

6.6 An Alternative Method to Estimate Sums of Squares for an Hypothesis 
 
Let us return to one of the multiple degrees of freedom hypotheses we looked at above,  
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

0

0

1000

0100
:H

3

2

1

0

0

β

β

β

β

. 

 
We are hypothesizing that two of the betas are zero, which implies that the independent variables 
associated with them vanish from the regression equation, being multiplied by zeroes.  Lets call 
the model that is missing x2 and x3 the “Restricted Model.”  We could calculate the Sum of 
Squares Error for this model and compare it to the usual Sum of Squares Error.  The difference, 
illustrated below, provides an alternative way of assessing the hypothesis:  
 
 SSH = SSError (Restricted Model) – SSError (Full Model) 
 
Since the restricted model has fewer variables, it’s SSError cannot be less than the SSError for the full 
model, thus SSH must be positive; it is after all a sum of squares, so it had better be positive!    

6.7 The Impact of All the Independent Variables 
  
We often wonder if any of our independent variables are doing anything at all, if between them, 
we are achieving any prediction or explanation of the dependent variable.  We can express this 
question using the hypothesis  
 
 0:H *k210 ==== βββ L . (6.19) 
 
The only β value missing from the hypothesis is β0, which is usually not of any theoretical 
importance.  The hypothesis asks if we can get any additional prediction, above and beyond the 
mean which is represented by β0.  The F given below, 
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can be compared to the tabled value of Fα, k*, n-k.  We can also summarize the predictive power of 
all the independent variables (except x0) using Big R Squared, also known as the squared multiple 
correlation or SMC, shown below: 
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Now we will look at some alternative formulae for these Sums of Squares for Error.  For example,  
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Using these terms, we can say that  
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 Corrected SS = SS Due to Real Independent Variables + SS Error. 
 
We can prove this by looking at the definition of SSError: 
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By rearranging we have  
 

 

∑∑∑ −+−=−

+−′=−

+′=

i

2
ii

i

2
i

i

2
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This allows us to restate R2 as 
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In summary, R2 summarizes the proportion of the corrected Sum of Squares, and of the variance, 
of y which is explained by each of the independent variables, x1, x2, …, xk* .  The hypothesis H0: ρ

2 
= 0 (note that rho, ρ, is the Greek equivalent to r) is equivalent to the hypothesis that β1 =  β2 =  ···  
= βk* = 0.   

6.8 Generalized Least Squares 
 
There are many circumstances where we cannot believe the Gauss-Markov assumption.  Suppose 
for example that the variance of the errors is not σ2I but rather follows some more general form, 
σ2V where V is a symmetric matrix.  If V is diagonal, the technique of this section is called 
weighted least squares or WLS.  If V is symmetric, it is called generalized least squares, or GLS.  
Of course, if the elements of V are not known, we would run out of degrees of freedom trying to 
estimate the elements of both β and V. But in many cases, we have an a priori notion of what V 
should look like.  For example, we can take advantage of the fact that the variance of the 
population proportion π is known and is in fact equal to π(1 - π)/n.  If our dependent variable 
consists of a set of proportions, we can modify the Gauss-Markov assumption accordingly and 
perform weighted least squares.  Instead of minimizing e′e, we minimize  
 
 f = e′V-1e,  (6.23) 
 
where the diagonal elements of V consist of the values π(1 - π)/n for appropriate to each observed 
proportion.   We can look at this technique as minimizing the sum of squares for a set of 
transformed errors.  The transformed errors have constant variance and therefore are appropriate 
for the Gauss-Markov assumption.  Our estimate of the unknowns becomes  
 
 yVXXVXβ 111 ][ˆ −−− ′′= . (6.24) 
We can estimate σ

2
 using  
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We can construct t-statistics that allow us to test hypotheses of the form  
 
 H0: βi = 0  
 
using the ith diagonal element of s

2
(X′V

-1
X)

-1
 in the denominator to create a t.  One can also test 

one degree of freedom hypotheses such as  
 
 a′β = c  
 
using  
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and for more complex hypotheses of the form  
 
 H0: Aβ - c = 0  
 
we use  
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to construct an F ratio numerator, with s

2
 in the denominator.   

 
This result is discussed in more detail in Section 17.4.   
 

6.9 Symmetric and Idempotent Matrices in Least Squares 
 
Define P = X(X′X)

-1
X′ and define M = I – P, i. e.  I - X(X′X)

-1
X′.   Now recall Equation (5.21) for 

the SSError:  
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What this tells us is that the SSError is a quadratic form, with the matrix M in the middle.  The 
SSPredicted is a quadratic form also, with P in the middle, 
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and as we might imagine, the raw total sum of squares of the dependent variable is a quadratic 
form, with the identity matrix in the middle:  
 
 y′y = y′Iy. 
 
So now we have some relationships among SSTotal, SSPredictable and SSError, namely 
 
 SSTotal = SSPredictable + SSError 
 
 y′Iy = y′Py + y′My and  (6.26) 
 
 I = P + M. (6.27) 
 
 
At this point we might note that the Identity matrix I is of full rank (Section 3.7), that is to say, |I| 
≠  0, but both P and M are not with P having rank k and M rank n - k, the same as their degrees of 
freedom.      
 
What’s more, P transforms y into ,ŷ and M transforms y into e as can be seen below: 
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and  
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So that we can think of P as the prediction transform or prediction operator, that is, a set of linear 
combinations that transform y into ,ŷ while M is the error transform or error operator that 
transforms y into e.  These matrices have some even more unusual properties, namely:  
 
Symmetry M = M′, P = P′  (6.30) 
 
Idempotency MM = M, PP = P, (6.31) 
 
and also,  
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More details of on the importance of M and P can be found in Section 4.5.  In summary, since  
 
 y′y = y′Iy = y′Py + y′My,  
 
we can show that these sums of squares components are distributed as Chi Square.   
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