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Chapter 5: Ordinary Least Squares 
 
Prerequisite: Chapters 1, 2, Sections 3.1, 3.2, 3.3, 4.1, 4.2 

5.1 The Regression Model 
 
The linear algebra that we covered in Chapter 1 will now be put to use in explaining the variance 
among observations on a dependent variable, placed in the vector y.  For each of these 
observations yi, we posit the following model:  
  
 .exxxy i*k*ik22i11i0i +β++β+β+β= L  (5.1) 
 
Economists have traditionally referred to Equation (5.1) as ordinary least squares, while other 
fields sometime use the expression regression, or least squares regression. Whatever we choose 
to call it, putting this equation in matrix terms, we have 
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 (5.2) 

 
The number of columns of the X matrix is k = k* + 1.  If you wish, you can think of X as 
containing k* “real” independent variables, plus there is one additional independent variable that 
is nothing more than a series of 1’s.   
 
The mechanism of prediction is a linear combination of independent variable values, with 
coefficients known as β’s.  The prediction for yi , in other words E(yi), is traditionally notated with 
a hat as below: 
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xxxŷ)y(E *k*ik22i11i0ii

Xβy =

β++β+β+β=≡ L

   (5.3) 

 
Each iŷ is formed as the linear combination ,i βx ⋅′ with the dot defined as in Equation (1.2).   
 
The difference between ŷ and y is the error, that is yye ˆ−=  as .ˆ eyy +=  The error vector is a 
key input in ordinary least squares.  Assumptions about the nature of the error are largely 
responsible for our ability to make inferences from and about the model.  To start, we assume that 
E(e) = 0 where both e and 0 are n by 1 columns.  Note that this is an assumption that does not 
restrict us in any way.  If E(e) ≠  0, the difference would simply be absorbed in the y-intercept, β0.   

5.2 Least Squares Estimation 
 
One of the most important themes in this book is the notion of estimation.  In our model, the 
values in the y vector and the X matrix are known.   They are data.  The values in the β vector, on 
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the other hand, have a different status.  These are unknown and hence reflect ignorance about the 
theoretical situation at hand.  These must be estimated in some way from the sample.  How do we 
go about doing this?  In Section 5.4 we cover the maximum likelihood approach to estimating 
regression parameters.  Maximum likelihood is also discussed in Section 3.10.  For now, we will 
be using the least squares principle.  This is the idea that the sum of the squared errors of 
prediction of the model, the ei, should be as small as possible.  We can think about this as a loss 
function.  As values of yi and iŷ  increasingly diverge, the square of their difference explodes and 
observation i figures more and more in the solution for the unknown parameters.   
 
The loss function f is minimized over all possible (combinations of) values in the β vector: 

β
fmin where f is defined as 
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Note that f is a scalar and so are all four components of the last equation above.  Components 2 
and 3 are actually identical.  (Can you explain why?  Hint: Look at Equation (1.5) and the 
discussion thereof.)  We can simplify by combining those two pieces as below: 
 
 = y′y – 2y′Xβ + β′X′Xβ. (5.4) 
 

The minimum possible value of f occurs where ,f 0
β
=

∂
∂ that is to say, when the partial derivatives 

of f with respect to each of the elements in β are all zero.  In this case, the null vector on the right 
hand side is k by 1, that is, it has k elements, all zeroes.  As we learned in Equation (3.12), the 
derivative of a sum is equal to the sum of the derivatives, so we can analyze our f function one 
piece at a time.  The value of ∂y′y/∂β is just a k by 1 null vector since y′y is a constant with 

respect to β.  The derivative [ ]Xβy
β

′−
∂
∂ 2  can be determined from two rules for derivatives 

covered in Chapter 3, namely the derivative of a linear combination 
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from Equation (3.17) and the derivative of a transpose 
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from Equation (3.19). 
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In this case the role of "a" above is being played by -2y′X and the role of x is being played by β: 
 

 [ ] yXXβy
β

′−=′−
∂
∂ 22 . 

 
As for piece number 3, βX′Xβ is a quadratic form and we have seen a derivative rule for that also, 
in Equation (3.18).  Using that rule we would have  
 

 XβX
β

XβXβ ′=
∂
′′∂ 2 . 

 
Finally, adding all of the pieces together, each being k by 1, we have 
 

 0yXXβX
β

=′−′=
∂
∂ 22f . (5.5) 

 
We are at an extreme point where any derivative ∂f(x)/∂x = 0.  At the minimum, in our case we 
then have   
 
 0yXXβX =′−′ 22  (5.6) 
 
 yXXβX ′=′  (5.7) 
 
 yXXXβ ′′= −1)(ˆ . (5.8) 
 
The k equations described in Equation (5.7) are sometimes called the normal equations.  The last 
line gives us what we need, a statistical formula we can use to estimate the unknown parameters.   
 
It has to be admitted at this point that a hat somehow snuck onto the β vector just in time to show 
up in the last equation above, Equation (5.8).  That is a philosophical matter that has to do with the 
fact that up to this point, we have had only a theory about how we might go about estimating the 
parameter matrix β in our model.  The last equation above, however, gives us a formula we can 
actually use with a sample of data.  Unlike β̂,β can actually be held in one’s hand.  It is one of a 
possible infinite number of ways we could estimate β.  The hat tells us that it is just one statistic 
from a sample that might be proposed to estimate the unknown population parameter.   
 
Is the formula any good?  We know that it minimizes f.  That means that there is no other formula 
that could give us a smaller sum of squared errors for our model.  Perhaps some idea of the 
efficacy of this formula can be had by thinking about its expectation.  So what about the 
expectation of ?β̂  What does that look like?  
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Here we have relied on the identity )(Eˆ yy ≡ going from the second to the third line above.  Also, 
we passed (X′X)

-1
X′ through the expectation operator, something that is certainly legal and in fact 

was talked about in Equation (4.5).  However, applying Theorem (4.5) in that way means that we 
are treating the X matrix as constant. Strictly speaking, the fact that X is fixed implies we cannot 
generalize beyond the values in X that we have observed.  The good news in the last line above is 
that the expectation of β̂ is ,β which certainly appears to be a good sign.  However, it actually turns 
out that this is not strictly necessary.  There are other properties that are more important.  We turn 
now to those. 

 

5.3 What Do We Mean by a Good Statistic? 
 
A good estimator, like our vector ,β̂ should have four properties.  We have already talked about 
one of them: unbiasedness: 
 
Unbiased .)β̂(E ii β=  (5.10) 
  
Consistent 1)εˆPr( ii →≤β−β as n  → ∞. (5.11) 
 
The above expression is sometimes written using the notation Plim, which stands for Probability 
limit.  In that case, Equation (5.11) boils down to  
 
 .ˆlimP ii β=β   
 
In effect what is going on with consistency is that as n → ∞, .ˆ ββ→  Unbiasedness turns out to not 
be as important as consistency.  Even if the average estimator is not equal to the parameter, if we 
can show that it gets closer and closer as the sample size increases, this is fine.  Conversely, if the 
average estimator is equal to the parameter, but increasing the sample size doesn’t get you any 
closer to that truth, that would not be good.  Now, another characteristic of a good estimator is that 
it is 
 
Sufficient  )ˆ|Pr( βy  does not depend on β (5.12)  
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Sufficiency implies that the formula for the estimator has wrung out all of the information in the 
sample that there is about the parameter.  Finally, efficiency is very important and forms the basis 
for reasoning about the population based on the sample: 
 
Efficient  )]ˆ)(ˆ[(E)ˆ(V βββββ −−≡ is smaller than other estimators (5.13) 
 
To show that a statistic is efficient, you need to derive its variance, and the variance is invariably 
needed for hypothesis testing and confidence intervals.  If this variance is large, you will not be 
able to reject even really bad hypotheses.  
 
As we saw above in Equation (5.9), unbiasedness can be demonstrated without any distributional 
assumptions about the data.  You will note that not a word has been mentioned – up to this point - 
as to whether anything here is normally distributed or not.   Some of these other properties require 
distributional assumptions to prove.  In our model, y = Xβ + e, the e vector will play an important 
role in these assumptions.  Both X and β contain fixed values; the former being simply data and 
the latter; by assumption a set of constant values true of the population as a whole.  The only input 
that varies randomly is e.  From this point forward in this chapter we will assume that  
 
 ),(N~ nn1n1n Σ0e . (5.14)  
 
This notation (see Section 4.2 for a review) tells us that the n by 1 error vector e is normally 
distributed with a mean equal to the null vector, and with a variance matrix Σ. Since e is n by 1, its 
mean must be n by 1, and the variances and covariances among the n elements of e can be arrayed 
in an n by n symmetric matrix.    
 
Given the assumption above, and our model, we can deduce [from Equations (4.4) and (4.8)] 
about the y vector that  
 
 .),(N~ nn1n1n ΣXβy  (5.15) 
 
Now we are ready to add an important set of assumptions, often called the Gauss-Markov 
assumptions.  These deal with the form of the n · n error variance-covariance matrix, Σ.  We 
assume that  
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which is really two assumptions.  For one, each ei value has the same variance, namely σ2.  For 
another, each pair of errors, ei and ej (for which i ≠  j), is independent.  In other words, all of the 
covariances are zero.  Since e is normal, this series of assumptions is often called NIID, that is to 
say we are asserting that e is normally, identically and independently distributed.     

5.4  Maximum Likelihood Estimation of Regression Parameters 
 
Lets review for a moment the linear model y = Xβ + e with y ~ N(Xβ, σ2I).  Maximum Likelihood 
(ML) estimation begins by looking at the probability of observing a particular observation, yi.  The 
formula for the normal density function, given in Equation (4.11), tells us that  



Ordinary Least Squares  53 

 

 ⎥⎦
⎤

⎢⎣
⎡ σ′−−

πσ
=

⋅

22

ii2i 2/)y(exp
2

1)yPr( βx  (5.17) 

 
where ⋅′ix is the ith row of X, i. e. the row needed to calculate iŷ as below,  
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L

L . 

 
 The part of the normal density that appears as an exponent (to e) is basically the negative one half 

of a z-score squared, that is .z
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Now that we have figured out the probability of an individual observation, the next step in the 
reasoning behind ML is to calculate the probability of the whole sample.  Since we assume that we 
have independent observations, that means we can simply multiply out the probabilities of all of 
the individual observations as is done below,  
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How did we get to the last step?  Here are some reminders from Section 3.1.  First recall that 
exp[a] = ea.  Next, you need to remember that we can write .aa 2/1 =   It is also true 

that [ ]∑∏ = ii fexp]fexp[  because ,eee baba +=  that multiplying a constant 

n
n

i

aaaaa =⋅⋅⋅=∏ L  and finally that .)ba()ba()ba( 2
ii −′−=−∑  

In Section 5.2 we choose a formula, ,β̂ based on the idea of minimizing the sum of squared errors 
of prediction.  But the least squares principle is just one way to choose a formula.  The Maximum 
likelihood principle gives us an alternative logical path to follow in coming up with parameter 
estimates.  The probability that our model is true is proportional to the likelihood of the sample, 
called l or more specifically Pr(y).  Therefore, it makes sense to pick β̂ such that l is as large as 
possible.   
 
It actually turns out to be simpler to maximize the log of the likelihood of the sample.  The 
maximum point of l is the same as maximum point of L = ln(l), so this does not impact anything 
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except that it makes our life easier.  After all, the likelihood of independent observations involves 
multiplication, and the ln function takes multiplication into addition which simplifies our task.  
Returning to the regression model, we have  
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with derivative  
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If we take ∂L/∂β = 0, multiply both sides by 2σ2, and solve for β we end up with the same formula 
that we came up with using the least squares principle, namely (X′X)-1X′y.  Thus β̂ is the least 
squares and the maximum likelihood estimator.  Things don’t always work out this way; 
sometimes least squares and ML estimators may be different and therefore in competition with 
each other.  ML always has much to recommend it though.  Whenever ML estimators exist, they 
can be shown to be efficient [see Equation (5.13)].   
 
But now it is time to return to the theme of this chapter, confirmatory factor analysis.  We need to 
be able to develop ML estimators for our three parameter matrices; Λ, Ψ and Θ.  Let us return to 
that task. 

5.5 Sums of Squares of the Regression Model 
 
Now that we have a formula β̂ for ,β  we can go back to our original objective function, f = e′e.  
We frequently call this scalar the sum of squares error, written alternatively as SSError or SSE.   
Now 
 
 )ˆ()ˆ(SSError βXyβXyee −′−=′=  (5.21) 
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so that therefore 
 
 SSError = y′y - y′X(X′X)-1X′y 
 
 SSError   = SSTotal  - SSPredictable (5.22) 
 
The error sum of squares can be seen as a remainder from the total raw sum of squares of the 
dependent variable, after the predictable part of has been subtracted.  Or, to put this another way, 
the SSTotal can be seen as the sum of the SSError + SSPredictable.   
 
There are many ways of expressing the SSPredictable, including  
 
 βXXββXyyXβyXXXXy ˆˆˆˆ)( 1 ′′=′=′′=′′′ − . 
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In order to prove to yourself that these are all equivalent, substitute the formula for β̂ into each of 
the alternative versions of the formula above and then simplify by canceling any product of the 
form X′X(X′X)-1.     
 
Taking the last version of the SSPredictable on the right, note that  
 
 yyXββXXβXβXβXβ ˆˆ][]ˆ[][]ˆ[ˆ ′=′=′′=′′ . 
 
Thus SSPredictable is the sum of the squares of the predictions of the model, the .ŷ i

  Another way to 
write the SSError is as 
 

 

.

)ˆ(

ˆ

ey

βXyy

βXyyyee

′=

′−′=

′′−′=′

 

 
However, the quantity y′e (SSError) is not the same as ey′ˆ since 
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Note that the last line above involves two equivalent versions of SSPredictable, which, being 
equivalent, have a difference of 0.  The upshot is that the predicted scores, ,ŷ and the errors, e, are 
orthogonal vectors [Equation (1.17)] with a correlation of 0.  

5.6 The Covariance Estimator for β 

We can conveniently produce the β̂ vector from the covariances of all the variables; x variables 
and y included.  We are going to place y in the first row and column of the covariance matrix, S 
[see Equation (2.12)].  The S matrix is partitioned (Section 1.4) into sections corresponding to the 
y variable and the x's:  
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The scalar syy represents the variance of the y variable, Sxx is the covariance matrix for the 
independent variables, and sxy = yxs′ is the vector of covariances between the dependent variable 
and each of the independent variables.  There is no information about the levels of the y or x 
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variables and so we will not be able to calculate 0β̂ from S, but we can calculate all of the other k* 
β values using  
 
 xy

1
xx

ˆ sSβ −= . (5.25) 
  
If we need to know what the value of 0β̂ is, we can calculate it as follows:  
 
 xy0 x xβ′−=β

)
 

 
where yx is the mean of the dependent variable and the column vector xx contains the means of 
each of the independent variables.   

5.7 Regression with Z-Scores 
 
Instead of just using deviation scores and eliminating β0, as was done in the previous section, we 
can also create a version of the β vector, β* say, based on standardized versions of the variables 
and which therefore does not carry any information about the metric of the independent and 
dependent variables.  This can sometimes be useful for comparing particular values in the β vector 
and other purposes.   
    
 yx

1
xx

* )(ˆ zZZZβ −′=  (5.26) 
 
 ,xy

1
xxrR −=  (5.27) 

 
where Zx represents the matrix of observations on the independent variables, after having been 
converted to Z-scores, and zy is defined analogously for the y vector.  The second way that we 
have written this, in Equation (5.27), is by using the partitioned correlation matrix, just as we did 
with the variance matrix above in Equation (5.24).  Here the correlations among the independent 
variables are in the matrix Rxx, and those between the independent variables and the dependent 
variable are in the vector rxy.  The partitioned matrix is shown below:  
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is the matrix of correlations among the k* independent variables, and is therefore k* by k*, the 
same as Sxx, and  
 
 ]rrr[

*kx21 x,yx,yx,yyxxy L==′ rr  
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is the vector of correlations between the dependent variable and each of the k* independent 
variables.    
 
It is interesting to note that in the calculation of β̂ as well as the standardized ,ˆ *β  the correlations 

among all the independent variables figure into the calculation into each .ˆ
iβ   Of course, if Rxx = I, 

this would simplify things quite a bit.  In this case, each independent variable would be orthogonal 
from all the others and the calculation of each iβ̂   could be done sequentially in any order, instead 
of simultaneously as we have done above.  We can also see here why our regression model is 
unprotected from misspecification in the form of missing independent variables.  If there is some 
other independent variable of which we are not aware, or at least that we did not measure, our 
calculations are obviously not taking it into account, even though its presence could easily modify 
the values of all the other β's.  The only time we can be protected from the threat of unmeasured 
independent variables is when we can be totally sure that all unmeasured variables would be 
orthogonal to the independent variables that we did measure.  How can we ever be sure of this?  
We are protected from unmeasured independent variables when we have a designed experiment 
that lets us control the assignment of subjects (or in general "experimental units", whatever they 
might be) to the values of the independent variables.   

5.8 Partialing Variance 
 
Lets assume we have two different sets of independent variables in the matrices X1 and X2.  Each 
of these has n observations, so they both have n rows, but there are differing numbers of columns 
in X1 and X2.  Our model is still Xβy =ˆ but  
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where β1 is the vector with as many elements as there are columns in X1 while β2 is the vector 
corresponding to each of the independent variables in X2.  Note that in this case β1 and β2 are 
vectors, not individual beta values.   The reason we are doing this is so that we can look at the 
regression model in more detail, tracking the relationship between two different sets of 
independent variables.   Now we can rewrite Xβy =ˆ as  
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The normal equations [c.f. Equation 5.7] would be  
 

 y
X
X

β
β

XX
X
X

⎥
⎦

⎤
⎢
⎣

⎡
′
′

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
′
′

2

1

2

1
21

2

1 ][  

 



58  Chapter 5 

but we could also look at the normal equations one set of X variables at a time, as  
 
 yXβXXβXX 1221111 ′=′+′ , (5.29) 
 
 yXβXXβXX 2222112 ′=′+′ . (5.30) 
 
If we substract 221 βXX′ from Equation (5.29) we end up with  
 
 2211111 βXXyXβXX ′−′=′  
 
which, after we solve for β1 , gives us the estimator  
 
 221

1
111

1
111 )()(ˆ βXXXXyXXXβ ′′−′′= −− . (5.31) 

 
The first component of the right hand side of Equation (5.31) is just the usual least squares 
formula that we would see if there was only set X1 of the independent variables and X2 was not 
part of the model.  Instead, something is being subtracted away from the usual formula.  To shed 
more light on this, we can factor the premultiplying matrix 1

1
11 )( XXX ′′ −  to get 

 
 ][)(ˆ

221
1

111 βXyXXXβ −′′= − . 
 
What is the term in brackets?  None other than the error for the regression equation if there was 
only X2 and X1 was not part of the model.  In other words, 1β̂ is being calculated not using y, but 
using the error from the regression of y on X2.  The variance that is at all attributable to X2 has 
been swept out of the dependent variable y before 1β̂  gets calculated, and vice versa.  

5.9  The Intercept-Only Model 
 
Define  
 
 P = X(X′X)

-1
X′  (5.32) 

 
and define  
 
 M = I – P,  (5.33) 
 
i. e.  M = I - X(X′X)

-1
X′.   Keeping these definitions in mind, let us now consider the simplest of 

all possible regression models, namely, a model with only an intercept term, 
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In this case, the β̂ vector is just the scalar 0β̂ and so it’s formula becomes 
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so that our model βXy ˆˆ = is just 
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The matrix P is given by the expression 
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so in that case the predicted values of y are  
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and the Sum of Squares Predictable are  
 



60  Chapter 5 

 ∑=′= iedictedPr ySS yPyy . 
 
The M matrix also takes on a particular form in the intercept-only model. 
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The M matrix transforms the observations in y into error, but in this case the “error” is equivalent 
to deviations from the mean (in other words di values): 
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The SSError is the quadratic form with M in the middle,  
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which the reader will recognize as the scalar, the corrected sum of squares from Equation (2.11).  

5.10 Response Surface Models 
 
While it is known as the linear model, one can fit more complicated curves than lines  or planes.  It 
is relatively straightforward to include quadratic or higher order polynomials in a regression 
model, merely by squaring or cubing one of the independent variables (it is wise to mean center 
first).  For example, consider the model  
 
 .xxxxŷ 4

2
2i32i2

2
1i11i0i β+β+β+β+β=  
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The second and fourth independent variables are squared versions of the first and third.  In order to 
demonstrate the wide variety of shapes we can model using polynomial equations, consider the 
figure below where β2 and β4 are either 0 or 1: 
 

  
 
 
Or consider the following diagram in which the sign of β2 and β4 is either positive or minus:  
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