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Preface to Version NSNS.2007.08.26

Over the years I have taught two different doctoral level quantitative methods courses in
Marketing at Florida State University. The nature of these two courses changed somewhat from
time to time depending on the exact offering of courses by other departments such as the Statistics
Department and the Educational Measurement Department, as well as the needs of each particular
cohort of students. The upshot was that I eventually ended up with a set of notes covering a good
number of the most important mathematical tools used in marketing; perhaps enough material for
two and a half semesters worth of classes. This manuscript is the result of transcribing most of
those notes into book form.

There are generally two sorts of textbooks available for a Marketing Ph D quantitative methods
course. The first sort is generally user-friendly, but with little or no actual mathematics. This kind
of book generally treats each presented statistical procedure as a black box. The student is taught
what type of stuff to put into the box, what type of stuff is likely to come out of the box, and how
to write it up. The second sort of book is journal article quality "raw material"; very technical and
prone to assuming that the student has had numerous recent courses in mathematical statistics.
Diving into the second type of text can be daunting. What's more, since the tradition in
mathematical marketing borrows from psychology, economics and management science, no single
technical book tends to cover everything and a thorough coverage of the field requires that the
student jump from one set of notational conventions to another. Yet if you pick up any issue of
Marketing Science or the Journal of Marketing Research, the author is liable to assume you are
familiar with anything from repeated measures ANOVA to efficient parameter estimation in
econometric models. This book is my attempt to create a text designed to allow students to follow
the mathematical reasoning used in Marketing Science, Journal of Marketing Research and other
quantitatively oriented journals. As such, it does not hide the mathematics, but it does not assume
that the student already has an extensive background in mathematics.

One unusual feature of this book is the license agreement, which is inspired by open source
software. Although software development is a different kind of intellectual activity from book
writing, the two are perhaps similar enough that methods that have worked in the former domain
will also work in the latter. We shall see, but one way or the other I believe it will be interesting
experiment.

It occurs to me that a fairly esoteric course like PhD quantitative methods is an ideal laboratory for
an open source book. I envision a community of adopters around the world adding to this version,
improving it, adding teaching notes, exercises, data sets, more references, improved slides, even
new chapters. There are a variety of chapters that might be useful: Bayesian techniques and
Proportional Hazards models are two examples. In addition, there are many topics that could be
added to individual chapters.
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Prerequisite Structure

Chapter Esimation,
Chapter  Prereq Calculus Distributions  Eigen structure =~ ML
1
2 1
3 1
4 1
5 1,2 3.1,32,33 41,42
6 5
7 6
8 7 3.4 3.5-3.8
9 5 4.3 3.9,3.10
10 9
11 9 3.5-3.8
12 5,6.8 3.9,3.10
13 12.1-124
14 7 3.9
15 5 3.9,3.10
16 5
17 6 35-38
18 5

Much of what Ph D students learn about substantive issues in marketing can be studied in any
order. It is, however, in the nature of technical topics that the sequence of study must be more
carefully arranged. With that in mind, the above is a suggested prerequisite sequence for each
chapter. The prerequisites are repeated in the beginning of each chapter.

You will note that the Chapter on OLS, Chapter 5, is needed for almost everything else in the
book. One could follow a sequence of Chapters 1 and 2, Sections 3.1, 3.2, 3.3, 4.1 and 4.2,
Chapter 5 and then do almost any subset of chapters as a specialized course. For example, a
course in LISREL modeling would go from Chapter 5 to Sections 3.9, 3.10 and 4.3 into Chapters
9 and 10. A course oriented more towards choice modeling would start out the same up to
Chapter 5 to but then cover Sections 3.9, 3.10 and 6.8 followed by Chapters 12 and 13. A course
oriented more towards econometrics might start with the sequence leading up to Chapter 5 and
then do Chapter 6, Sections 3.5 - 3.8 on eigenstructrure and 16, 17and 18. Many other possibilities
exist.
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Section I: Mathematical Fundamentals



Chapter 1: Linear Algebra

1.1 Introduction to Vector and Matrix Notation

Much of the mathematical reasoning in all of the sciences that pertain to humans is linear in nature, and
linear equations can be greatly condensed by matrix notation and matrix algebra. In fact, were it not for
matrix notation, some equations could fill entire pages and defy our understanding. The first step in
creating easier-to-grasp linear equations is to define the vector. A vector is defined as an ordered set of
numbers. Vectors are classified as either row vectors or column vectors. Note that a vector with one
element is called a scalar. Here are two examples. The vector a is a column vector with m elements,

a
a= %2 ,
am
and the vector b is a row vector with q elements:
b=[bb, b,].

You should notice that in this text vectors are generally represented with lower case letters in bold.

There are a variety of ways that we can operate on vectors, but one of the simplest is the transpose
operator, which, when applied to a vector, turns a row into a column and vice versa. For example,

a'=[a, a, - a,l

By convention, in this book, a vector with a transpose will generally imply that we are dealing with a row.
The implication is that by default, all vectors are columns.

A matrix is defined as a collection of vectors, for example

X Xp X1m
Xy Xp Xom
X =
_an Xn2 Xnm
= {Xij}'

In this text, matrices are typically represented with an upper case bold letter.

The square brackets are used to list all of the elements of a matrix while the curly brackets are sometimes
used to show a typical element of the matrix and thereby symbolize the entire matrix in that manner. Note
that the first subscript of X indexes the row, while the second indexes columns. Matrices are characterized
by their order, that is to say, the number of rows and columns that they have. The above matrix X is of
order n by m, sometimes written n - m. From time to time we may see a matrix like X written with its order
like so: ,X,,. It is semantically appropriate to say that a row vector is a matrix of but one row, and a column
vector is a matrix of one column. Of course, a scalar can be thought of as the special case when we have a
1 by 1 matrix.
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At times it will prove useful to keep track of the individual vectors that comprise a matrix. Suppose, for
example that we defined each of the rows of X as

’
X, =[x X Xy
’
Xy =[Xy Xy ot Xy ]
!
xn- _[Xn] Xn2 Xnm]
and then defined each column of X:
Xll X12 le
X1 X2 Xom
X-1: ’X.2: 9""X.m: (11)
_an_ _XnZ_ _Xnm_
so that X could be represented as
!’
Xl»
!’
X
2.
X=| "7 =[x, x, o ox,] (12)
X!

In this context, the dot is known as a subscript reduction operator since it allows us to aggregate over the
subscript replaced by the dot. So for example, the dot in x| summarizes all of the columns in the ith row of

X.

Every so often a matrix will have exactly as many rows as columns, in which case it is a square matrix.
Many matrices of importance in statistics are in fact square.

1.2 The First Steps Towards an Algebra for Matrices

One of the first steps we need to make to create an algebra for matrices is to define equality. We now do
so defining two matrices

A=Biffa =b, foralli,j. (13)

Every element of A and B needs to be identical. For this to be possible, obviously both A and B must have
the same order!

Just as one can transpose a vector, a matrix can be transposed as well. Matrix transposition takes all rows
into columns and vice versa. For example,
3 4 4
12105

Bringing our old friend X back, we could say that

A~ B~ W
[ I ]
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X X Xl
X' = Xp Xp X2
_le X2m Xnm
o
=% 1= ]
= =X X, Xy
X/
We might add that
’
(X') =X. (1.4)

A square matrix S is called symmetric if
S=§". (1.5)
Of course, a scalar, being a 1 by 1 matrix, is always symmetric.

Now we are ready to define matrix addition. For two matrices A and B of the same order, their sum is
defined as the addition of each corresponding element as in

C=A+B
(1.6)
{cyl=a;+b;.

That is to say, we take each element of A and B and add them to produce the corresponding element of the
sum. Here it must be emphasized that matrix addition is only possible if the components are conformable
for addition. In order to be conformable for addition, they must have the same number of rows and
columns.

It is possible to multiply a scalar times a matrix. This is called, appropriately enough, scalar multiplication.
If ¢ is a scalar, we could have

cA=B
For example we might have
a;; ap c-a,; cC-ap
Clay axpn | =]Cay C-ay
a3 ay €c-a; C-ay

Assuming that c; and c, are scalars, we can outline some properties of scalar multiplication:

Associative: c(c,A)=(cc,) A (1.7)
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Distributive:

(c,+c))A=c,A+c, A

(1.8)

Now that we have defined matrix addition and scalar multiplication, we can define matrix subtraction as

A-B=A+(-1)B.

There are a few special matrices that will be of use later that have particular names. For example, an n by
m matrix filled with zeroes is called a null matrix,

0]

1]

L]

(1.9)

(1.10)

We have already seen that a matrix that is equal to its transpose (S =S') is referred to as symmetric. A

diagonal matrix, such as D, is a special case of a symmetric matrix such that

(1.11)

i. e. the matrix consists of zeroes in all of the off-diagonal positions. In contrast, the diagonal positions

hold elements for which the subscripts are identical.

A special case of a diagonal matrix is called a scalar matrix, a typical example of which appears below:

(1.12)

And finally, a special type of scalar matrix is called the identity matrix. As we will soon see, the identity
matrix serves as the identity element of matrix multiplication. For now, note that we generally use the

symbol I to refer to such a matrix:
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Having defined the identity matrix, we can think of a scalar matrix as being expressible as cI where c is a
scalar.

We can now define some properties of matrix addition.

Commutative: A+B=B+A (1.13)
Associative: A+B+C)=(A+B)+C (1.14)
Identity: A+0=A (1.15)

Note that in the definitions above we have assumed that all matrices are conformable for addition.

At this point we are ever closer to having all of the tools we need to create an algebra with vectors and
matrices. We are only missing a way to multiply vectors and matrices. We now turn to that task. Assume
we have a 1 by m row vector, a', and an m by 1 column vector, b. In that case, we can have

bl
b
ab=[a, a, a ||’
b,
=ab, +a,b, +---+a_b (1.16)

This operation is called taking a linear combination, but it is also known as the scalar product, the inner
product, and the dot product. This is an extremely useful operation and a way to express a linear function
with a very dense notation. For example, to sum the elements of a vector, we need only write

va=fi 1 - 1] =Y.

When a linear combination of two non-null vectors equals zero, we say that they are orthogonal as x’ and y
below:

xy=0. (1.17)

Geometrically, this is equivalent to saying that they are at right angles in a space with as many axes as there
are elements in the vector. Assume for example that we have a 2 element vector. This can be interpreted
as a point, or a vector with a terminus, in a plane (a two space). Consider the graph below:
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X' =[2 1]

=]

2L

Note that the vector x'= [2 1] is represented in the graph. Can you picture an orthogonal vector? The

length of a vector is given by /x'x = Z X7,

1.3 Matrix Multiplication

The main difference between scalar and matrix multiplication, a difference that can really throw off
students, is that the commutative property does not apply in matrix multiplication. In general, AB # BA,
but what’s more, BA may not even be possible. We shall see why in a second. For now, note that in the
product AB, where A is m - n and B is n - p, we would call A the premultiplying matrix and B the
postmultiplying matrix. Each row of A is combined with each column of B in vector multiplication. An
element of the product matrix, cjj, is produced from the ith row of A and the jth column of B. In other
words,

n

oy =ajb ;= a,by (1.18)
k

The first thing we should note here is that the row vectors of A must be of the same order as the column
vectors of B, in our case of order n. If not, A and B would not be conformable for multiplication. We could
diagram things like this:

C=,A,B

m p:m nnp
(R

Here the new matrix C takes on the number of rows of A and the number of columns of B. The number of
columns of A must match the number of rows of B. OK, now let’s look at a quick example. Say
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—_ =N
NS SN

3 [(=D2+3)1+2)1 (-1)3+(3)4+(2)2
B | 22+O0)1+M1  (2)3+(0)4+(1)2

313

15 8]

A particular triple product, with a premultiplying row vector, a square matrix, and a postmultiplying
column vector, is known as a bilinear form:

¢=a, B .d (1.19)

m m>—T m m

A very important special case of the bilinear form is the quadratic form, in which the vectors a and d above
are the same:

¢ =a, B, .a (1.20)

m m>— m m

The quadratic form is widely used because it represents the variance of a linear transformation.

For completion, we now present a vector outer product, in which an m by 1 vector, say a, is postmultiplied
by a row vector, b’ :

an:mal lb'n
_al
a
=7 |[b, b, - b,] (1.21)
[ qm
_albl a,b, ab,
_ a,b, a,b, a,b,
amb] ame ambn

The matrix C has m - n elements, but yet it was created from only m + n elements. Obviously, some
elements in C must be redundant in some way. It is possible to have a matrix outer product as well - for
example a 4 by 2 multiplied by a 2 by 4 would also be considered an outer product.

1.4 Partitioned Matrices

It is sometimes desirable to keep track of parts of matrices other than either individual rows or columns as
we did with the dot subscript reduction operator. For example, lets say that the matrix A, which is m by p
consists of two partitions, A; which is m by p, and A, which is m by p,, where p, + p, = p. Thus both A,
and A, have the same number of rows and when stacked horizontally, as they will be below, their columns
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will add up to the number of columns of A. Then lets say we have the matrix B, which is of the order p by
1, has two partitions By and B, with B; being p, by r and B, being p, by r. The partitions B, and B, both
have the same number of columns, namely r, so that when they are stacked vertically they match perfectly
and their rows add up to the number of rows in B. In that case,

B
AB=[A, | A,]|--|=AB, +A,B, (1.22)

2

We note that the product A,B, and the product A,B, are both conformable with order of m by r, precisely
the order of AB.

1.5 Cross-Product Matrices

The cross product matrix is one of the most useful and common matrices in statistics. Assume we have a
sample of n cases and that we have m variables. We define x; as the observation on consumer i (or store i

or competitor i or segment i, etc.) with variable or measurement j. We can say that x| isa 1 - m row vector
that contains all of the measurements on case i and that x. ; is the n - 1 column vector containing all cases’

measurements on variable j. The matrix X can then be expressed as a partitioned matrix, either as a series
of row vectors, one per case, or as a series of columns, one per variable:

r
X,

’
X

X= =[x_1 X, - xAm] (1.23)

’

X

o
What happens when we transpose X? All the rows become columns and all the columns become rows, as
we can see below:

X':[xl_ X, xn_]: (1.25)

In the right piece, a typical row would be x/;which holds the data on variable j, but now in row format.
This row has n columns. In the left piece, x; is an m by 1 column holding all of the variables for case i.

Now we have two possible ways to express the cross product, X'X . In the first approach, we show the
columns of X which are now the rows of X":
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X
x/,
p— ’ p—
B=XX= [x1 X, X m]
’
le
(- ’ 2 7
X Xy XiX, X1 Xm
’ ! . ’
XL,X, X,X, X,X
= (1.26)
’ r !
_X«mxl X.mxlz me»m_

= {X.,jx-k} = {bjk}

The above method of describing X'X shows each element of the m by m matrix being created, one at a
time. Each element of X'X is comprised of an inner product created by multiplying two n element vectors
together. But now lets keep track of the rows of X, which are columns of X' which is just the opposite of
what we did above. In this case, we have

X’
2.
B=X'X= [xl, X, - xn,]
’
_X"'_
=[x, X} +X,X, +---+Xx_ X (1.27)

and the m - m outer products, x, x| , are summed across all n cases to build up the cross product matrix, B.

1.6 Properties of Matrix Multiplication

In what follows, c is a scalar, and A, B, C, D, E are matrices. Note that we are assuming in all instances
below that the matrices are conformable for multiplication.

Commutative: cA =Ac (1.28)
Associative: A(cB) = (cA)B = c¢(AB) (1.29)

Looking at the above associative property for scalar multiplication, we can say that a scalar can pass
through a matrix or a parenthesis.

Associative: (AB)C = A(BC) (1.30)
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Right Distributive: A[B+C]=AB+ AC (1.31)
Left Distributive: [B+C]JA=BA+CA (1.32)
It is important to note here that unlike scalar algebra, we must distinguish between the left and right
distributive properties. Again, note that these properties only hold when the symbols represent matrices
that are conformable to the operations used in the equation.

From Equation (1.31) and (1.32) we can deduce the following

(A+B)Y(A+B)=A'A+A'B+B'A+B'B. (1.33)

To multiply out an equation like Equation (1.33), students sometimes remember the mnemonic FOIL =
first, outside, inside, last, which gives the sequence of terms to be multiplied.

Transpose of a Product: [AB]'=B'A’ (1.34)

In words, the above theorem states that the transpose of a product is the product of the transposes in reverse
order. And finally, the identity element of matrix multiplication is the previously defined matrix I:

dentity: TA=AI=A (1.35)

1.7 The Trace of a Square Matrix

With a square matrix, from time to time we will have occasion to add up the diagonal elements, a sum
known as the trace of a matrix. For example for the p by p matrix S, the trace of S is defined as

Tr$=>s;. (1.36)

A scalar is equal to its own trace. We can also say that with conformable matrices A and B, such that AB
and BA both exist, it can be shown that the

Tr[AB] = Tr[BA] . (1.37)

The theorem is applicable if both A and B are square, or if A ism - nand Bisn - m.

1.8 The Determinant of a Matrix

While a square matrix of order m contains m” elements, one way to summarize all these numbers with one
quantity is the determinant. The determinant has a key role in solving systems of linear equations.
Consider the following two equations in two unknowns, x, and X,.

apX; +apX, =Yy,

4 X taynX, =Y,

|:au alz:||:xl}:|:}’1:|
Ay Apn || X, Y
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In a little while we will solve for the unknowns in the vector x using matrix notation. But for now, sticking
with scalars, we can solve this using the following formula for x,:

_ Yi8» ¥,y (1.38)
a8y —apay

Xy

The denominator of this formula is the determinant of the 2 by 2 matrix A. The determinant of a square
matrix like A is usually written |A|. Being in the denominator, the system cannot be solved when the
determinant is zero. Whether the determinant is zero depends on how much information is in A. If rows or
columns are redundant, then |[A| = 0 and there is no unique solution to the system of equations.

The determinant of a scalar is simply that scalar. Rules for determining the determinant of 3 by 3 and
larger matrices can be found in Bock (1975, p. 62), Johnson and Wichern (2002, pp. 94-5) and other books

on the linear model.

1.9 The Inverse of a Matrix

In scalar algebra we implicitly take the inverse to solve multiplication problems. If our system above was
one equation in one unknown, it would be

ax=y

With a system of equations, the analog of a = 1/a is the inverse of a matrix, A™.

Ax=y
A'Ax=A"y
Ix=Aly

To solve the system, you must find a matrix A" such that A"A =1. You can only do so when |[A| # 0. In
fact, we have now just officially defined the inverse of a matrix. The inverse of a square matrix A is simply
that matrix, which when pre- or post-multiplied by A, yields the identity matrix, i. e. AA' =A"A =1. One
property of inverses is that the inverse of a product is equal to the product of the inverses in reverse order:

Inverse of a Product: (AB) =B'A” (1.39)

For proof, consider that

B'A'AB=B (A"A)B
-1
-B'IB
=1

The inverse of the transpose of a square matrix is equal to the transpose of the inverse of that matrix. In
ol .
other words, if A is the inverse of A, then
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AVA =T, (1.40)

1.10 Kronecker Product

The Kronecker Product with operator ®, is defined as

C..=nA,® B, ={a;B}. (1.41)

mp

For example,

o

a;b, a;b
|:311:|®{b11 b12:|: ayby  ap by,
4y b, by ayby, ayby,

a,b, a,b
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Chapter 2: Descriptive Statistics
Prerequisite: Chapter 1

2.1 Review of Univariate Statistics

The central tendency of a more or less symmetric distribution of a set of interval, or higher, scaled scores,
is often summarized by the arithmetic mean, which is defined as

§=%ixi. @.1)

We can use the mean to create a deviation score,

d =x, -X, (2.2)

so named because it quantifies the deviation of the score from the mean.

Deviation is often measured by squaring, since it equates negative and positive deviations. The sum of
squared deviations, usually just called the sum of squares, is given by

n
a 22“0{i -X)* or
i

2.3)
S

Another method of calculating the sum of squares was frequently used during the era that preceded
computers when students would work with calculating machines,

a=Z:xi2 1z (2.4)

n

Regardless whether one uses Equation (2.3) or Equation (2.4), the amount of deviation that exists around
the mean in a set of scores can be averaged using the standard deviation, or its square, the variance. The
variance is just

with s being the positive square root of s

We can take the deviation scores and standardize them, creating, well; standardized scores:

2.5)

7. = =

X, —x d,
s

Next, we define a very important concept, that of the covariance of two variables, in this case x and y. The
covariance between x and y may be written Cov(x, y). We have
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(2.6)
1 n
=——Sd d, ,
n_lZ Xi Vi

where thed, are the deviation scores for the x variable, and the d, are defined analogously for y. Note
that with a little semantic gamesmanship, we can say that the variance is the covariance of a variable with
itself. The productd d is usually called a cross product.

2.2 Matrix Expressions for Descriptive Statistics

In this section we will return to our data matrix, X, with n observations and m variables,

Xn Xnp Xim

X = Xy X Xom

an Xn2 Xnm
:{Xij}'

i':[il X, im]
.,
=H11nX 2.7
_X11 X1z le_
:l[l o 1] X X» Xom
n
_an Xn2 Xnm_

You might note that here we are beginning to see some of the advantages of matrix notation. For example,
look at the second line of the above equation. The piece 1'X expresses the operation of adding each of the
columns of the X matrix and putting them in a row vector. How many more symbols would it take to
express this using scalar notation using the summation operator X?

The mean vector can then be used to create the deviation score matrix, as below.
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d, d, - d, 1
dy dy o dz _x-— 1 %, X, o %] (2.8)
d, d, - d,, _1
(X, X, X,
I LS X,
X, X, - X,

We would say of the D matrix that it is column-centered, as we have used the column means to center each
column around zero.

Now lets reconsider the matrix X'X. This matrix is known as the raw, or uncorrected, sum of squares and

cross products matrix. Often the latter part of this name is abbreviated SSCP. We will use the symbol B
for the raw SSCP matrix:

inlxil ZXiIXiZ inlxim
B=XX-= zxizxu inzxiz inzxim ' 2.9)

E XimXil E XimXip E XimXim

In addition, we have seen this matrix expressed row by row and column by column in Equations (1.26) and
(1.27). The uncorrected SSCP matrix can be corrected for the mean of each variable in X. Of course, it is
then called the corrected SSCP matrix at that point:

A=DD (2.10)

(qu)z (zxn)(zxiZ) (inl)(zxim)_
a-p_L (inz)(zxil) (ZXiZ)Z (inz)(zxim)
() EralExs) = (Exaf

Note that Equation (2.10) is analogous to the classic statement of the sum of squares in Equation (2.3)
while the second version in Equation (2.11) resembles the hand calculator formula found in Equation (2.4).

The correction for the mean in the formula for the corrected SSCP matrix A can be expressed in a variety
of other ways:

—_—

(2.11)
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A=B-L(x1)(,x.1)

nn—1

n
|
=B-—(X'1)(1'X)
n
1 ! !
=B-—X'(11"X
n
11 1
1, 1 1
=B——X X
n
11 1
=B-X(1'X).

Now, we come to one of the most important matrices in all of statistics, namely the variance-covariance
matrix, often just called the variance matrix. It is created by multiplying the scalar 1/(n-1) times A, i. e.

1
n-1

S=

A (2.12)

This is the unbiased formula for S. From time to time we might have occasion to see the maximum
likelihood formula which uses n instead of n - 1. The covariance matrix is a symmetric matrix, square,
with as many rows (and columns) as there are variables. We can think of it as summarizing the
relationships between the variables. As such, we must remember that the covariance between variable 1
and variable 2 is the same as the covariance between variable 2 and variable 1. The matrix S has
m(m +1)/2 unique elements and m(m —1)/2 unique off-diagonal elements (of course there are m diagonal

elements). We should also point out thatm(m —1)/2 is the number of m things taken two at a time.

Previously we had mean-centered X using its column means to create the matrix D of deviation scores.
Now we will further standardize our variables by creating Z scores. Define A as the matrix consisting of
diagonal elements of S. We define the function Diag(-) for this purpose:

A = Diag(S)
(2.13)
st 0 0
0 s 0
0 0 s

Next, we need to invert the A matrix, and take the square root of the diagonal elements. We can use the
following notation in this case:
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1/y/s; 0o - 0
2

0 1hfs; - 0

0 0 - 14/s2
The notion of taking the square root does not exactly generalize to matrices [see Equation (3.38)].
However, with a diagonal matrix, one can create a unique square root by taking the square roots of all the
diagonal elements. With non-diagonal matrices there is no unique way to decompose a matrix into two
identical components. In any case, the matrix A™"> will now prove useful to us in creating Z scores. When

you postmultiply a matrix by a
diagonal matrix, you operate on the columns of the premultiplying matrix. That is what we will do to D:

A= (2.14)

Z=DA""?
(dyy dpp e dy | |1 h 0 0
dy dy - dy, 0 1/\/¥ 0
_dnl dn2 dnm_ L 0 0 1/ Si]_
_dll d12 dlm_
SN S
d21 d22 d2m
: : (2.15)
dnl dn2 dnm

which creates a matrix full of z scores. Note that just as postmultiplication by a diagonal matrix operates
on the columns of the premultiplying matrix, premultiplying by a diagonal matrix operates on the rows of
the postmultiplying matrix.

Now we are ready to create the matrix of correlations, R. The correlation matrix is the covariance matrix
of the z scores,

R=——7'Z
n-1
=ATVISAT? (2.16)
1, Iim
BT Dm
T, r 1
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Since the correlation of x and y is the same as the correlation between y and x, R, like S, is a symmetric
matrix. As such we will have occasion to write it like

leaving off the upper triangular part. We can also do this for S.
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Chapter 3: Calculus Tools
Prerequisite: Chapter 1

3.1 Logarithms and Exponents

By definition, the log function to the base b is the function such thatc =log,a if b° =a. Itisa

very useful function in statistical reasoning, since it takes multiplication into addition as we will
see in Equation (3.1). We generally use the notation log to imply a base of 10, i.
e.loga =log,, a and we use the notation In to imply a base of Euler's e (2.7182812...), that is

Ina =log,a. Some rules of logarithms follow:

Inab=Ina+Inb 3.
1n%:1na—1nb (3.2)
Ina® =blna (3.3)
Ine* =a (3.4)
Ine=1 (3.9
In1=0 (3.6)

As for exponents, we have the following rules:
a-a®=a"" (3.7
a'’? =\a (3.8)

From a purely typographical point of view, it is sometimes more convenient to use the notation
exp(a) = e”.

3.2 A Review of Scalar Calculus

Consider the problem of calculating the slope of f(x) = x". Unlike the equation for a line, the slope
of the f(x) function changes depending on the value of x. However, at a small enough segment of
the function, fitting a straight line would be reasonable. A picture of the situation is given below:
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X X+AX

The slope is composed of the amount of change in the y axis (the rise) divided by the change in
the x axis (the run). The fraction looks like

Ax)? —x2
S]ope:M
(x+Ax)—x
3 x? +2x-Ax +(Ax)* =%’
Ax

=2X + AX.

As we reduce Ax smaller and smaller, making a closer approximation to the slope, it converges on
the value 2x. The derivative is the slope of a function at a point. There are two notations in
common use. Thus we could write dx*/dx = 2x or f'(x) = 2x. In this book we will generally stick
to the first way of writing the derivative.

More generally, for a function consisting of the power of a variable,

—m-x™". (3.9)

For the function f(x) = ¢ where c is a constant, we would have
d(c)/dx =0 (3.10)
and for f(x) = cx,
d(cx)/dx =c. (3.11)

The derivative of a sum is equal to the sum of the derivatives as we now see:

dif ) +g()] _ df(x) | dg(x)

3.12
dx dx dx ( )

The exponential function to the base e has the interesting property that
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de*
=e" 3.13
. (3.13)

And we finish up this review by noting that for compound functions, such as g[f(x)], we can
employ the chain rule which states that

dglf()] _ dglf ()] df(x)

(3.14)
dx df (x) dx
Now, taking the chain rule into account we can state
de'™ df (x
de ™ _ore0 A0 (3.15)

dx dx

3.3 The Scalar Function of a Vector

We can now define the derivative of a function with respect to a whole vector of "independent"”
variables, of (x")/0x’. Note that the function of the vector, f(x'), is a scalar. To begin, we will start

with the constant function, that is, f(x') = ¢ where ¢ is a constant (scalar). The derivative of this
function with respect to the row vector x' is itself a row vector with the same order as x'. That is
because we need a derivative of the function with respect to each element of the vector. This
vector derivative is called a partial derivative which means that as we take the derivative of the
function with respect x;, each of the other elements of x are treated as constants.

b |6 & | o
ox' | ox, ox, ox,

(3.16)
=[0 0 - 0].

The derivative of the function with respect to x; is 0, and i runs from 1 to m. Thus a vector
derivative is created. For the linear combination a'x we have

oax |oax odax  oax
ox’ ox, 0x, X,
0 0 0
=|—Ia,;x; +a,x, +---+a,x,] —[a;x,+a,x,+-+a,x,] -+ —[a,x,+a,x,+-+a,X,]
X1 0X, OX
=[a, a, - a,]=a’ (3.17)

Another important result is the derivative of a quadratic form [Equation (1.20)]. In the equation
below, we assume that A is a symmetric m - m matrix so that
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OXAX oy’ (3.18)
ox

with A' = A.

We now state the rule that the derivative of the transpose is equal to the transpose of the
derivative, that is

of [of]
—=|—/ and
ox' [6){_
(3.19)
ot [or]
ox | ox']

From time to time we will need to use the second order derivative of a scalar function. It may be
the case that the 0f/0x; changes as a function of x;, for example. The slope of the 0f/0x;
with respect to x;, in other words the derivative of the derivative, is written as

o fat)_ ot _ o
oXj \ 0%

- ox0x, - oX;0%;

There are many uses of this second order derivative including nonlinear estimation [Section (3.9)],
Maximum Likelihood parameter estimation [Section (3.10)], as well as determining whether,
when the first order derivative is 0, we are at a maximum or minimum.

3.4 Derivative of Multiple Functions with Respect to a Vector

Suppose we have the linear system,

nyIZnAmmxl'
Now
a
dy OAx 0 |a) .
ox' ox' ox'|--
al
_6a1__
8x,’ a)
~ oa), B a), A
| ox' |7 -
oa’, al
L ox' |
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To summarize,

0
Y, _OAX _ (3.20)
o,x,, ox'

with each of the n rows of Jy/0x' a different function of X', y,, y,, ..., ¥, and each of the m columns
of 0y/0x' referring to a different independent variable: x, X,, ..., X,. In other words, element i, j of
Oy/ox'is of Oyi/0x; = a;.

Of course given Equation (3.19),

NI
ox ox'

3.5 Eigen Structure for Symmetric Matrices

Consider the p by 1 random vector y, consisting of p observations taken on a randomly chosen
case. The covariance matrix S, which is the covariance matrix for p variables [that is, V(y) = S], is
a symmetric matrix. I wish to create a linear combination

u=xy, (3.21)

such that q = V(u) is maximized. In this way I can replace the p elements of y with a single
number that behaves as much as possible like the original p values. The problem can be written
as

Max q =x'Sx (3.22)
" . .

The notation here can be read, "Max q over all values of x." One easy way to do this would be to
pick x =[o0 © -+ o]’ but this would be completely uninteresting. Instead we will normalize x, or
constrain it so that we do not fall into a solution with a series of infinities. The reasoning behind

how we maximize a function under constraints was introduced into mathematics by Lagrange. We
can arbitrarily fix

P
Zx? =x'x=1 orset
j
x'x-1=0. (3.23)

This will allow us to focus on the pattern in the x vector that allows us to extract the maximum
variance from S. Geometrically, we can represent the situation as in the graph below:
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HL(x)=x'Cx=q

Y/
N

fix)=xx-1=0

Rather than trying to maximize f,(x), we will maximize f,(x) subject to f,(x). This is equivalent to
maximizing f,(x) - f|(x), or finding the principal axis of the ellipse in the figure. The problem can
now be written as

Max
X

Max [sx - A(x'x — 1)] (3.24)
X

[£, (x) - Af, ()] =

Note the sudden and mysterious appearance of the scalar A! This creature is called a Lagrange
multiplier. But where did it come from? Indeed. In defense of this equation, note that f,(x) = x'x -

= 0. The scalar A does not change the equation one iota, or better; one lambda. The function
f,(x), as well as A, are doomed to vanish. In short, A is a mathematical throw-away. Using the
rule for the derivative of a quadratic form [Equation (3.18)], along with some help from Equation
(3.19), we see that

Ox'Sx 98k
1) ¢
and that
MEX=D oy (3.25)
15).¢

In that case, to maximize (3.24) we set
i[X'Sx —Mx'x— 1)] =0
ox

2Sx—2AIx=0. (3.26)
We can simplify further as below,
Sx = Ax, (3.27)

where A is now "acting like" S. Putting A in Equation (3.24) is certainly legal since x'x - 1 will be
zero anyway. But what is it doing still hanging around in Equation (3.27)? We promised it would
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go away, didn't we? What is A anyway? Before we can answer this we need to return to Equation
(3.27), were we had

Sx =Ax
which when premultiplied by x' leads to

x'Sx = x'Ax.

By the rules of scalar multiplication [in particular Equation (1.28)], and by the fact that x'x = 1 we
have

XAX=X'XA =1
so that we can conclude
X'Sx =A. (3.28)
At this point the reader will recognize the formula for the variance of a linear combination,
Equation 4.9. The value A is called an eigenvalue of the matrix S. It is the maximum value, g, of

the variance of u = x'y which was our original motivation for this problem way back in Equation
(3.21). The vector x chosen to maximize this variance is called an eigenvector of S.

3.6 A Small Example Calculating the Eigenvalue and Eigenvector

We will now return to Equation (3.26), which although it looked like

2Sx —2AIx =0,
we can multiply by 1/2 to create
Sx-AIx=0 or
[S-AI]x=0. (3.29)

Equation (3.29) can be solved trivially, as

[S—AI]' [S—AI]x =[S—AI]"0

x=0,

but such a solution would not be useful at all to us and in fact would not give us what we are
looking for, namely, the linear combination u = x'y such that V(u) = x'Sx is as large as possible.
To avoid falling into this trivial solution we must somehow pick A such that

S-Al=0
which in turn implies that [S - AI]" does not exist (see Section 1.8). If [S - AI]" does not exist,

we are not stuck with x = 0, the trivial solution. Below, we can see how this works with a 2 x 2
example, lets say

26 Chapter 3



In that case we have

2-0 1
IS — Al

Recalling the equation for the determinant of a 2 x 2 matrix [from the denominator of Equation
(1.38)], we have

2-2)7-12=0
which as a quadratic equation has two roots, i. e.

4-20=20+2%-1=0
M —4r+3=0

(. =3)(h-1)=0

where the roots are A, =3 and A, = 1. The first eigenvalue represents the maximum variance while
the second represents the maximum variance that can be found after the first linear combination
has been extracted. It is also true that the last eigenvalue represents the minimum amount of
variance that can be extracted by a linear combination. We can now substitute A; back into
Equation (3.29) in order to solve for the first eigenvector. Calling this first eigenvectorx,, we

have

-1 1[x,] [0]
I —1][x, ] |0

so that -x;, + X,; = 0 and X, - x,, = 0. It is obvious then that x,, = x,,. Taken together with the
restriction that x'x = 1 that we imposed in Equation (3.23), we have

]
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3.7 Some Properties of Eigenstructure

Before proceeding, it will be useful to take each of the eigenvectors, X, X,, -, X, and place them
as columns into the matrix X. We also take the eigenvalues, A, A,, -, &, and put them on the
diagonal of the matrix L. The eigenvalues in L summarize a variety of properties of the original
matrix S. For example:

Tr(S) = Zp:xi = tr(A) (3.30)

|S|:f[xi (3.31)

The rank of a square matrix S is given by the number of eigenvalues > 0. In other words, the rank
of a square matrix is given by the number of non-null eigenvectors. We say that a square matrix is
of full rank if one cannot pick a non-null vector x such that x’Sx = 0. We can see then from
Equation (3.31) that if no eigenvalue is zero, the determinant, |S|, will be non-zero and it will be

possible to find S .
For each eigenvector-eigenvalue combination i, we have
Sx., =x,
so that if we premultiply by x/; we have
xijx = x,’jxiki .

Making the same argument for the eigenvalue and eigenvector j, we have
Sx.; = XM

but now premultiplying by x;

' -
X, Sx = x,ix,jkj.

Clearly it has to be the case that

xX/Sx; = x/Sx;;

in which case,
' -
XXA = XX A

But for that to happen, it must be true that

x'x.=0. (3.32)
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In other words, each pair of eigenvectors is orthogonal. When you add the standardizing
constraint, Equation (3.23), we can say that

X'X=1I. (3.33)

The X matrix, as can be seen above, acts as its own inverse. Any matrix X for which X'X = XX' =
I is called orthonormal.

Here are some more properties of the eigenvalues and eigenvectors. From Equation (3.27) we can
make the simultaneous statement about each eigenvalue-eigenvector below,

SX = XL. (3.34)
Premultiplying by X' leads to
X'SX= L. (3.35)
Or, starting again from Equation (3.34) but postmultiplying by X' this time leads to
S=XLX'. (3.36)
=xL"”L"x’ (3.37)

where the "square root" of the matrix L is clearly defined as {A'’*}, that is having the square root of
each of the A, on the diagonal [c.f. Equation (2.14) and the discussion thereof]. Now if we define

12

B=XL

We can say that

S=BB’ (3.38)
which provides a "square root" like effect, even if the square root of a non-diagonal matrix cannot
be uniquely defined. That this equation is not unique can be shown simply by defining the
orthonormal matrix J, i. e. J'J =JJ' = 1. Now if B = BJ then

S =B* B*=BJJ'B =BB'".

In factor analysis we seek a B matrix corresponding to a hypothesis about latent variables. In
Cholesky factorization, we produce a lower triangular B matrix. In finding the eigenstructure of

the S matrix, the columns of the B matrix produced in Equation 3.38) maximize the variance of
the extracted components.

But the eigenstructure of S captures even more of the properties of S. For example, if s exists,
S =XL'X'. (3.39)
In addition, if A = ¢S where c is a scalar, then

A =XcLX', (3.40)
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and if A =S + cI then

A=X[L+cIX'. (3.41)

3.8 Some Geometric Aspects of Eigenstructure

Since X'X =1, X can be thought of as a rigid, or angle-preserving transformation of a coordinate
space. The original vector y is transformed to u by X as in

u=X'y.
Here we have repeated Equation (3.21), except the transformation occurs for each eigenvector, not

just the first one. Alternatively, instead of thinking of y as moving to u, we can think of this as the
axes of the space moving. A picture of this is now shown:

Y2

Y1

The angle between an old axis, y;, and a new axis, u;, is notated 6;. We note then for the two
dimensional example given above, we have for X

X = cosO,, cosH,
| —cos6,, cosh,, |

The angles 0, are determined by the direction of the principle axis of the ellipsoid x'Sx = A.

3.9 Linear and Nonlinear Parameter Estimation

In almost all cases that we have in mathematical reasoning in marketing, there are some aspects of
our model that we know, for example there might be the value m, and there are some values that
we do not know and that therefore have to be estimated from the sample at hand. For example, in
the linear model, y = Xp, the X matrix is known, but the B vector contains a set of regression
slopes that need to be estimated from the sample. The topic of linear estimation is investigated in
depth in Chapter 5. For now, we note that we create an objective function, that when optimized,
will lead us to good estimates for this unknown parameter vector. For example, we might pick the
sum of squares of deviations between predicted data and actual data. In that case we would have
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f=y-9'y-y)
=(y—-XB)'(y - Xp)

as our objective function. The goal then is to pick values in the  vector so as to make f as small
as possible. According to the calculus, this can be done by determining the derivative of f with
respect to B, and setting it equal to zero as in

L
op
The derivative 0f/0p is a linear equation and happens to contain solely elements of the X matrix,

the y vector and P in various combinations. When we set it equal to zero, we can solve for f and
end up with things on the right hand side that are known, namely X and y. This allows us to

derive a closed form or analytical solution for B that we call |3
B=(X'X)"Xly.

The term closed-form means that we can use algebraic analysis to find the values for the
unknowns. In short, we end up being able to solve for the unknowns. In other cases, our objective
function, or its derivative, might be more complex. In those cases we cannot just solve for the
unknown parameters using algebra. This often happens when we are trying to model choice
probabilities, or market shares, which; since they are bounded by 0 and 1; logically cannot be
represented linearly. When this happens we have to use non-linear optimization. Non-linear
optimization involves the following steps.

1. We take a stab at the unknowns, inventing starting values for them and loading them into a
vector. Lets call that vector 6.

2. We assess the derivative of the objective function at the current values in 8. If the derivative is
not zero, we modify 6 by moving it in the direction in which the derivative is getting closer to 0,
the null vector. We keep repeating this step until the derivative arrives at the null vector.

How do we know in which direction to move 6? First we will look at a geometric picture, then we

will use symbols to make the argument. Lets assume that instead of an entire vector of unknowns,
we have a single unknown; the scalar 6. We have started out with an estimate of 0 at 0.
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0 0

We are trying to move our estimate towards the bottom of the function. This is logically
analogous to a parachutist who lands on the side of the hills surrounding a valley and who wants
to find the bottom of the valley in the dead of night. How does he or she know which way to
move? By feeling with your foot, you can figure out which way is down. The derivate 0f/00,
gives us the slope of the function that relates 0 to f, evaluated at 6,. It lets us know which way is
down. If the derivative is negative, we need to move to our right on the graph, because that is the
direction in which f is less. On the other hand, if the derivative is positive, as it would be at
position 0, we need to move to our left. In more formal terms, in nonlinear optimization we could
calculate the next estimate of 6 using the formula

0, =0, —5—
20,

where 0 is the step size. Sometimes we use the derivative of the derivative (the second order
derivative) to fine-tune the step size. The step size can be important because we want to make
sure we end up at the global minimum of f, not a local minimum. It also can help when you have
good, rational, starting values for the first step that are close to their true values. Good start values
and a good choice for step size can also make the search go faster, something that is still important
even in these days of cheap computing power. In any case, non-linear optimization algorithms
stop when the derivative gets close enough to zero, or in other words, when the difference between
successive estimates of the unknowns does not change any more. Its important to understand that
typically, there are more than one unknown parameters estimated at the same time. Thus the
parameters and their derivatives are in vector form.

Nonlinear estimation is used in many branches of statistics and is needed in almost every chapter
except for 5, 6, 7 and 8.

3.10 Maximum Likelihood Parameter Estimation

Rather than minimize the sum of squared errors, a different philosophy would have us maximize
the likelihood of the sample. In general, the probability that our model is correct is proportional to
the probability of the data given the model. In Maximum Likelihood (ML), we pick parameter
estimates such that the probability of the data is as high as possible. Of course, it only makes
sense that we would want to maximize the probability of observing the data that we actually did
observe.
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We can illustrate this using p, the population mean. Suppose that we had a sample of three
people, with scores of 4, 6 and 8. What would the probability be of observing this sample if the
true population value of p was 249? Pretty low, right? What would the probability of the sample
be if u was equal to 6? Certainly it would be quite a bit higher. The likelihood principle tells us to
pick that estimate for p that maximizes the probability of the sample. Of course to do this, we
need to make an assumption about the probability distribution of the observations that comprise
the sample.

To make the discussion more general, consider a set of observations yy, y,,-:-, y,. Lets say further

that we have a model and that the unknown parameters of the model are in the vector ©.
According to the model, the likelihood of observation i is Pr(y;| 0). Assuming independent sample
units, i. e. no data point is influenced by any other, the likelihood function according to the model
is

4, = ﬁPr(yi 10). (3.42)

In these cases we also tend to have a version of the Pr(y;) that does not depend on 6. The
likelihood of the sample under this alternative may be called 4,. It turns out that under very

general conditions, —21n(/, /4, ) is distributed according to the Chi Square distribution, i. e.

12 =-2In(4,/2,). (3.43)

The minus sign in front of the expression for Chi Square means that we can switch from
maximizing 4 to minimizing Chi Square. Minimization is always a safer bet where computers are
concerned since a number too large to be processed causes far more of a problem than a number
that is too close to zero (the square in Chi Square implies that it is non-negative). What’s more,
this allows us to test our model against the general alternative hypothesis using the x> distribution.
The degrees of freedom of the Chi Square are equal to the difference between the number of data
points that we are using; in this case n, and the number of unknown elements in ©.

Here, it could be added that in some cases, such as linear regression, maximum likelihood

estimates have a closed form and can be estimated using the formula forﬁ given in the previous

section. In other words, B does not just minimize the sum of squared errors, it also maximizes the

likelihood function. In other cases, we don’t get that sort of break and nonlinear optimization
must be used.

Maximum likelihood comes with variances and covariances of the parameter vector "built-in".
The matrix of the second order derivatives, known as the Hessian, contains the elements:

Calculus Tools 33



oy’ oy’ oy’
0’0, 00,00, 06,00,
aiZ ai2 N 822
H=|00,00, 0%, 90,00, | (3.44)
aiZ 6%2 N 822
| 00,00, 06,00, GRN
oy’

Elements of the above matrix, h; = ,consist of the derivative of the derivative of 7> with
i7Yj

respect to 0, with respect to 0;. In other words,

o | oy
=30 {aﬁ } (3.45)
i i

22

oY,

Here we are treating as a function of Gj, and taking its derivative with respect to Gj,

J

The covariance matrix of  is given by
-1

V() =[-E(H)] (3.46)

with the term in the square brackets, -E(H), minus the expectation of the Hessian, called the
information matrix.

Whenever possible, marketing scientists prefer to work with maximum likelihood estimators given
that they have very desirable properties. In addition to knowing the variance matrix of your

estimator, if 0 is the maximum likelihood estimator of  then f (é) estimates f(0) (for more detail

see Johnson and Wichern, 2002, p. 170). You can estimate 0 and then apply the function f. More
importantly, if you can derive or create a maximum likelihood estimator in a certain situation, that
estimator is guaranteed to be consistent, asymptotically normally distributed and asymptotically
efficient (a proof of this appears in Theil 1971, pp. 392-7). The phrase asymptotically efficient
implies that no other estimator can have a lower variance.
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Chapter 4: Distributions

Prerequisite: Chapter 1

4.1 The Algebra of Expectations and Variances

In this section we will make use of the following symbols:
»4; 1s a random variable

by is a random variable

.C1 1S a constant vector

=Dn 18 a constant matrix, and

.Fun 1s a constant matrix.

Now we define the expectation of a continuous random variable, such that
E(a,) = If(ai)aidai, (4.1)

where f(a;) is the density of the probability distribution of a;. Given that f(a,) is a density function,
it must therefore be the case that

E(a;) = If(ai)dai =1.

Often in this book, f(a;) will be taken to be normal, but not always. In fact, in some instances, a;
will be discrete rather than continuous. In that case,

E(a) =D Pr(a; =) ] (42)

where there are J discrete possible outcomes for a. We call E(-) the expectation operator.
Regardless as to whether a and b are normal, the following set of theorems apply. First, we note
that the expectation of a constant is simply that constant itself:

E(c)=c. 4.3)
The expectation of a sum is equal to the sum of the expectations:

E(a+ b) = E(a) + E(b). (4.4)

The expectation of a linear combination comes in two flavors; one for premultiplication and one
for postmultiplication:

E(Da) = DE(a). (4.5)

E(a'F) = E(a')F. (4.6)
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You can see from the above two equations that a constant matrix can pass through the expectation
operator, which often simplifies our algebra greatly. All of these theorems will be important in
enabling statistical inference and in trying to understand the average of various quantities.

We now define the variance operator, V(-), such that
V(a) = E{[a-E(a)][a-E(@)] }. 4.7

We could note here that if E(a) = 0, that is if a is mean centered, the variance of a simplifies to
E(aa").

Whether a is mean centered or not we also have the following theorems:
V(a+c¢)=V(a). (4.8)

Equation (4.8) shows that the addition (or subtraction) of a constant vector does not modify the
variance of the original random vector. That fact will prove useful to us quite often in the chapters
to come. But now it is time to look at what is arguably the most important theorem of the book.
At least it is safe to say that it is the most referenced equation in the book:

V(Da) =DV(a)D' (4.9)
V(a'F) =F'V(a)F (4.10)

Equation (4.9), that shows that the variance of a linear combination is a quadratic form based on
that linear combination, will be extremely useful to us, again and again in this book.

4.2 The Normal Distribution

The normal distribution is widely used in both statistical reasoning and in modeling marketing
processes. It is so widely used that a short-hand notation exists to state that the variable x is
normally distributed with mean p and variance G x ~ N(u, 02). We will start out by discussing
the density function of the normal distribution even though the distribution function is somewhat
more fundamental (it is, after all, called the normal distribution) and in fact the density is derived
from the distribution function rather than vice versa. In any case, the density gives the probability
that a variable takes on a particular value. We plot this probability as a function of the value:

1.0r

Pr(x)

The equation that sketches out the bell shaped curve in the figure is
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Pr(x) = Pr(x =x,) = X _“)2}. 4.11)

1 —(
exp
V2no { 26°

Most of the “action” takes place in the exponent [and here we remind you that exp(x) = ex]. In
fact, the constant 1/ x/ﬂc is needed solely to make sure that the total probability under the curve
equals one, or in other words, that the function integrates to 1. You might also note that the o is
not under the radical sign. Alternatively you can include a o under the radical. When we
standardize such that p =0 and 5 =1we generally rename X, to z, and then

_ 52
Pr(z)=Pr(z=2,)= L exp{ ZZ“

J2n

Note that ¢(-) is a very widely used notational convention to refer to the standard normal density
function. This will show up in many places in the chapters to follow.

}=¢(Za) : (4.12)

In statistical reasoning, we are often interested in the probability that a normal variable falls
between two particular values, say x, and x,. We can picture this situation as below:

1.0- Pr[x, <x<xy)

Pr(x) -

We can derive the probability by integrating the area under the curve from x, to x,. There is no
analytic answer — that is to say no equation will allow you to calculate the exact value — so the
only way you can do it is by a brute force computer program that creates a series of tiny rectangles
between x, and x,. If the bases of these rectangles become sufficiently small, even though the top
of the function is obviously not flat, we can approximate this probability to an arbitrary precision
by adding up the areas of these rectangles. We write this area using the integral symbol as below:

Xp

Pr{x, <x<x,]= ! Iexr{w}dx.

'\/EG M 262

We can standardize, using the calculus change-of-variables technique, and then move the constant
under the integral, all of which yields the same probability as above. This is shown next:

Pr[z, <z<z,]= JE(I)(z)dZ .
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We are now ready to define the normal distribution function, which means the probability that x is
less than or equal to some value, like x,. This is pictured below:

1.0r

Pr(x)

Xp

Here, to calculate this probability, we must integrate the left tail of the distribution, starting at -oo
at ending up at x,. This will give us the probability that a normal variate x is less than x;:

L=, -w’
Prix<x,]= ex . dx or 4.13
[x<x,)=—=— | 1{ o (4.13)

-0

= 'fd)(z) dz=d(z,). (4.14)

-0

Note the notation ®(z,) implies the probability that z < z, The symbol @ is an uppercase phi

while ¢ is the lowercase version of that Greek letter. It is traditional to use a lower case letter for a
function, while the integral of that function is signified with the upper case version of that letter.
Note also that

o0d(z)
oz

d(z). (4.15)

A graphical representation of ®(z) is show below:

1.0[

O(2)

The curve pictured above is often called an ogive.
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In many cases, for example cases having to do with choice probabilities in Chapter 12, we wish to
know that probability that a random variate is greater than 0:

Pr(x > 0) = O(n/ o) = cD[E(x)/JV(x)] . (4.16)
4.3 The Multivariate Normal Distribution

For purposes of comparison, let us take the normal distribution as presented in the previous
section,

Pr(x)=Pr(x =x,) = X, —u)z}

1 —(
exp
V2no { 26°

and rewrite it a little bit. For one thing,+/a =a'’*. In that case, rewriting the above gives us

Pr(x=x,) =

1 -(x,—w’
(27:)”2(52)1/2 exp{ 262 }

Now lets say we have a column vector of p variables, x, and that x follows the multivariate normal
distribution with mean vector p (which is also p by 1), and variance matrix X (which is a
symmetric p by p matrix). In that case, the probability that the random vector x takes on the set of
m values that we will call x, is given by

= exp[(xa -’ 7' (x, —p)/Z]. 4.17)

1
Prx=x,)=———
(=) 2m)™* | Z|

We would ordinarily use a short-hand notation for Equation (4.17), saying that x ~ N(p, X).
Making some analogies, in the univariate expression G appears in the denominator (of the

exponent) while in the multivariate case we have £ filling the same role. You might also notice

"2 shows up in the

that in the fraction before the exponent, we see o in the univariate case, but | X|
multivariate case, the square root of the determinant of the variance matrix. In the univariate case
there is the square root of 2m, in the multivariate we see the (p/2)™ root of 2. A picture of the

bivariate normal density function appears below for three different values of the correlation
p=0,,/0,0,.

40 Chapter 4



LK
LSS 1\

27
2;'%3’"3’:""“”""““‘“‘““‘:‘

=4 00"‘ “ L ASCTTIE

LY
e

2550,
/i
/-,;}/;/;g,'&"\‘\\\e'
4

=

25

FOTR
////il?:::“}‘{\\\\\\
S

pr

e

A

,.,,,’"'%‘«\\\% |
;,;x,f,?}'ff{'tf::‘&\\\\‘

e e
SRS S
L oSSt

4.4 Chi Square

We have already seen that the scalar y, where y ~ N(i, 02), can be converted to a z score, z ~
N(0, 1) wherez = DAL {5 square that z score I end up with a chi square variate with one
c

degree of freedom, i. e.

2

a2
z =y .

More generally, if L have a vectory =[y, vy, -+ y,] andify is normally distributed with
mean vector
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n= H
n
and variance matrix
s> 0 0
g0 O l-o
0 0 o’

foralli, 1,2, ,n; wehavez=[z, z, --- z,]. We can say that the vector z ~ N(0, I). In that
case,

n
o _ 2 2
77= 2 Z; ~%n-
i

The Chi Square density function is approximated in the following figure, using several different
degrees of freedom to illustrate the shape.

Pr(y?) pal
0.25 ¢

2

0.20 Vs

0.15 | X7
X122
0.10 |

0.05

0.00 ‘ —
0 5 10 15 20 25

With small degrees of freedom, the distribution looks like a normal for which the left tail has been
folded over the right. This is more or less what happens when we square something - we fold the
negative half over the positive. With larger degrees of freedom, the Chi Square begins to resemble
the normal again, and in fact, as can be seen in the graph, the similarity is already quite striking at
12 degrees of freedom. This similarity is virtually complete by 30 degrees of freedom.
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4.5 Cochran's Theorem

For any n - 1 vector z ~ N(0, I) and for any set of n - n matrices A, where Z A, =1, then

n

Zz’Aiz =2z (4.18)

i

which, as we have just seen, is distributed as .. Further, if the rank (see Section 3.7) of A, is
we can say that

n

Zri =n and (4.19)

Z'Az ~ Xf (4.20)

Each quadratic form z'Az is an independent Chi Square. The sum of independent Chi Square
values is also a Chi Square variable with degrees of freedom equal to the sum of the component's
degrees of freedom. This allows us to test nested models, such as those found in Chapters 9 and
10 as well as Chapters 12 and 13. In addition, multiple degree of freedom hypothesis testing for
the linear model is based on this theorem as well. Defining P = X(X'X)_IX’ and M =1 - P, then
since

Vy=yly=y'Py+yMy,

we have met the requirements of Cochran's Theorem and we can form an F ratio using the two
components, y'Py and y'My. In addition, the component y'Py can be further partitioned using the
hypothesis matrix A or restricted models.

4.6 Student's t-Statistic

Like the normal distribution, the Chi Square is derived with a known value of o. The formula for
Chi Square on n degrees of freedom is

Sl DR N (ST R S I
=) =) _ . 4.21)
i c i c
You will note in the numerator of the right hand piece, a y has been added and subtracted. Now
we will square the numerator of that right hand piece which yields
1 (Y —9) +2y,y—2y,u =25 +2yu+y° —2yu+p’
0 :?z i~y Yiy — 2yl GZY yuty Mol (4.22)

At this time, we can modify Equation (4.22) by distributing the X addition operator, canceling
some terms, and taking advantage of the fact that
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Doing so, we find that

n T 2 n < _ 2
Xf‘ :z(ylgz}I) + (Yqu) . (423)

You might note that at this point Equation (4.23) shows the decomposition of an n degree of
freedom Chi Square into two components which Cochran's Theorem shows us are both themselves
distributed as Chi Square. But the numerator of the summation on the right hand side, that is

n
. . 2 o
Z(y —¥)?, is the corrected sum of squares and as such it is equivalent to (n - 1)s”. Rewriting

both components slightly we have

szl _ (n_?sz " (?;H)z (4.24)
c c /n

which leaves us with two Chi Squares. The one on the right is a z-score squared and has one
degree of freedom. The reader might recognize it as a z score for the arithmetic mean, y. The Chi

. . 2
Square on the left has n - 1 degrees of freedom. At this point, to get the unknown value ¢ to
vanish we need only create a ratio. In fact, to form a t-statistic, we do just that. In addition, we
divide by the n - 1 degrees of freedom in order to make the t easier to tabulate:

,:\/@—u>2/<n—1)s2
62/11 c’(n-1)

_y-mu
s/vn
The more degrees of freedom a t distribution has, the more it resembles the normal. The

resemblance is well on its way by the time you reach 30 degrees of freedom. Below you can see a
graph that compares the approximate density functions for t with 1 and with 30 df.

(4.25)
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The 1 df function has much more weight in the tails, as it must be more conservative.

4.7 The F Distribution

With the F statistic, a ratio is also formed. However, in the case of the F, we do not take the
square root, and the numerator % is not restricted to one degree of freedom:

2
_ X;rl /rl
nn 2 :
sz /rZ
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Section II: The General Linear Model
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Chapter 5: Ordinary Least Squares

Prerequisite: Chapters 1, 2, Sections 3.1, 3.2, 3.3, 4.1,4.2

5.1 The Regression Model

The linear algebra that we covered in Chapter 1 will now be put to use in explaining the variance
among observations on a dependent variable, placed in the vector y. For each of these
observations y,, we posit the following model:

Vi =Bo +X By +XpBs + o+ X P Fe (5.1)
Economists have traditionally referred to Equation (5.1) as ordinary least squares, while other

fields sometime use the expression regression, or least squares regression. Whatever we choose
to call it, putting this equation in matrix terms, we have

Yi Ioxy o Xy Bo €
Y2 _ Loxy o X B, + €
yn 1 an Xnk"‘ Bk* en
(5.2)
y=Xp+e.

The number of columns of the X matrix is k = k* + 1. If you wish, you can think of X as
containing k* “real” independent variables, plus there is one additional independent variable that
is nothing more than a series of 1’s.

The mechanism of prediction is a linear combination of independent variable values, with
coefficients known as 3’s. The prediction for y;, in other words E(y,), is traditionally notated with
a hat as below:

E(y) =¥ =By +XuPy +X,By + o + X B
(5.3)
y=XB.

Each ¥, is formed as the linear combination x; B, with the dot defined as in Equation (1.2).

The difference between y and y is the error, that is € =y — )A' as y =y +e. The error vector is a

key input in ordinary least squares. Assumptions about the nature of the error are largely
responsible for our ability to make inferences from and about the model. To start, we assume that
E(e) = 0 where both e and 0 are n by 1 columns. Note that this is an assumption that does not
restrict us in any way. If E(e) # 0, the difference would simply be absorbed in the y-intercept, B.

5.2 Least Squares Estimation

One of the most important themes in this book is the notion of estimation. In our model, the
values in the y vector and the X matrix are known. They are data. The values in the B vector, on
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the other hand, have a different status. These are unknown and hence reflect ignorance about the
theoretical situation at hand. These must be estimated in some way from the sample. How do we
go about doing this? In Section 5.4 we cover the maximum likelihood approach to estimating
regression parameters. Maximum likelihood is also discussed in Section 3.10. For now, we will
be using the least squares principle. This is the idea that the sum of the squared errors of
prediction of the model, the e;, should be as small as possible. We can think about this as a loss
function. As values of y; and ¥, increasingly diverge, the square of their difference explodes and

observation i figures more and more in the solution for the unknown parameters.

The loss function f is minimized over all possible (combinations of) values in the B vector:

min f where f'is defined as

f :e'ezzn:ef :i(Yi _9i)2

=(y-V'-y)

=(y-Xp)'(y-Xp)

=¥y -BXy-y'Xp+pXXp.
Note that f is a scalar and so are all four components of the last equation above. Components 2
and 3 are actually identical. (Can you explain why? Hint: Look at Equation (1.5) and the

discussion thereof.) We can simplify by combining those two pieces as below:

=y'y-2yXp + B'X'XB. (5.4)

.. . of . . L
The minimum possible value of f occurs where a—B =0, that is to say, when the partial derivatives
of f with respect to each of the elements in B are all zero. In this case, the null vector on the right
hand side is k by 1, that is, it has k elements, all zeroes. As we learned in Equation (3.12), the

derivative of a sum is equal to the sum of the derivatives, so we can analyze our f function one
piece at a time. The value of Oy'y/0p is just a k by 1 null vector since y'y is a constant with

... 0 . L
respect to B. The derlvatlvea—ﬁ[— Zy'XB] can be determined from two rules for derivatives

covered in Chapter 3, namely the derivative of a linear combination

oa'x
x

from Equation (3.17) and the derivative of a transpose

o _[ar
ox ox’

from Equation (3.19).
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In this case the role of "a" above is being played by -2y’X and the role of x is being played by f:
0
—|-2y'Xp|=-2Xly.
o [- 2y'xp]=-2X'y

As for piece number 3, BX'Xp is a quadratic form and we have seen a derivative rule for that also,
in Equation (3.18). Using that rule we would have

Op'X'Xp

- = 2X'XB.

Finally, adding all of the pieces together, each being k by 1, we have

of
Z = 2X'XB-2X'y =0. 5.5
@B B y (5.5)

We are at an extreme point where any derivative of(x)/0x = 0. At the minimum, in our case we
then have

2X'XB-2X'y =0 (5.6)
X'XB = X'y (5.7)
B=(XX)"XYy. (5.8)

The k equations described in Equation (5.7) are sometimes called the normal equations. The last
line gives us what we need, a statistical formula we can use to estimate the unknown parameters.

It has to be admitted at this point that a hat somehow snuck onto the B vector just in time to show
up in the last equation above, Equation (5.8). That is a philosophical matter that has to do with the
fact that up to this point, we have had only a theory about how we might go about estimating the
parameter matrix B in our model. The last equation above, however, gives us a formula we can

actually use with a sample of data. Unlikef, f% can actually be held in one’s hand. It is one of a

possible infinite number of ways we could estimate 8. The hat tells us that it is just one statistic
from a sample that might be proposed to estimate the unknown population parameter.

Is the formula any good? We know that it minimizes f. That means that there is no other formula
that could give us a smaller sum of squared errors for our model. Perhaps some idea of the
efficacy of this formula can be had by thinking about its expectation. So what about the

expectation of [%? What does that look like?
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E(B) = E[(X'X) ' X'y]

= (X'X)" X"E(y)
(5.9)
= (X'X) " X'[XB]

Here we have relied on the identity y = E(y) going from the second to the third line above. Also,

we passed (X’X)-IX' through the expectation operator, something that is certainly legal and in fact
was talked about in Equation (4.5). However, applying Theorem (4.5) in that way means that we
are treating the X matrix as constant. Strictly speaking, the fact that X is fixed implies we cannot
generalize beyond the values in X that we have observed. The good news in the last line above is

that the expectation of ﬁ is B, which certainly appears to be a good sign. However, it actually turns

out that this is not strictly necessary. There are other properties that are more important. We turn
now to those.

5.3 What Do We Mean by a Good Statistic?

A good estimator, like our vector ﬁ, should have four properties. We have already talked about
one of them: unbiasedness:

Unbiased EB,)=8.. (5.10)

Consistent Pr(B, =B, <e) > lasn — o. (5.11)

The above expression is sometimes written using the notation Plim, which stands for Probability
limit. In that case, Equation (5.11) boils down to

Plimp, =p,.

In effect what is going on with consistency is that as n — o, ﬁ — B. Unbiasedness turns out to not

be as important as consistency. Even if the average estimator is not equal to the parameter, if we
can show that it gets closer and closer as the sample size increases, this is fine. Conversely, if the
average estimator is equal to the parameter, but increasing the sample size doesn’t get you any
closer to that truth, that would not be good. Now, another characteristic of a good estimator is that
1t1s

Sufficient Pr(y |B) does not depend on B (5.12)
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Sufficiency implies that the formula for the estimator has wrung out all of the information in the
sample that there is about the parameter. Finally, efficiency is very important and forms the basis
for reasoning about the population based on the sample:

Efficient V(ﬁ) = E[(ﬁ - [i)(ﬁ —PB)]is smaller than other estimators (5.13)

To show that a statistic is efficient, you need to derive its variance, and the variance is invariably
needed for hypothesis testing and confidence intervals. If this variance is large, you will not be
able to reject even really bad hypotheses.

As we saw above in Equation (5.9), unbiasedness can be demonstrated without any distributional
assumptions about the data. You will note that not a word has been mentioned — up to this point -
as to whether anything here is normally distributed or not. Some of these other properties require
distributional assumptions to prove. In our model, y = X + e, the e vector will play an important
role in these assumptions. Both X and B contain fixed values; the former being simply data and
the latter; by assumption a set of constant values true of the population as a whole. The only input
that varies randomly is e. From this point forward in this chapter we will assume that

L€ ~N(0, X)). (5.14)

This notation (see Section 4.2 for a review) tells us that the n by 1 error vector e is normally
distributed with a mean equal to the null vector, and with a variance matrix Z. Since e is n by 1, its
mean must be n by 1, and the variances and covariances among the n elements of e can be arrayed
in an n by n symmetric matrix.

Given the assumption above, and our model, we can deduce [from Equations (4.4) and (4.8)]
about the y vector that

.Y, ~ NG XB,, ,X,). (5.15)
Now we are ready to add an important set of assumptions, often called the Gauss-Markov

assumptions. These deal with the form of the n - n error variance-covariance matrix, X. We
assume that

o 0 0
0 2 .00

L=cil= 7 , (5.16)
0 0 o’

which is really two assumptions. For one, each e; value has the same variance, namely c”. For
another, each pair of errors, ¢; and ¢; (for which i # j), is independent. In other words, all of the
covariances are zero. Since e is normal, this series of assumptions is often called NIID, that is to
say we are asserting that e is normally, identically and independently distributed.

5.4 Maximum Likelihood Estimation of Regression Parameters

Lets review for a moment the linear model y = Xp + e with y ~ N(Xp, o’T). Maximum Likelihood
(ML) estimation begins by looking at the probability of observing a particular observation, y;. The
formula for the normal density function, given in Equation (4.11), tells us that
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Pr(y,) = \/21_2 exp[— (yi —x; .B)Z /252} (5.17)
no

where x| is the ith row of X, i. e. the row needed to calculate ¥, as below,

Bo
B,

Yi :[l Xjp Xik*]
Bor

The part of the normal density that appears as an exponent (to e) is basically the negative one half
y-u
o

. 1
of a z-score squared, that is —Ezz.

E(y) =y, =x{B.

The role of “p” inz= is being played by

Now that we have figured out the probability of an individual observation, the next step in the
reasoning behind ML is to calculate the probability of the whole sample. Since we assume that we
have independent observations, that means we can simply multiply out the probabilities of all of
the individual observations as is done below,

(=Pr(y)= ﬁﬁ exp[— (v, —x.B)° /202]

:Wexp{—i(yi —x!B)> /202} (5.18)

1
=——exp|-(y-XB)'(y-XB)/25° |.
T pl- (v Xp)'(y - XB)/ 267
How did we get to the last step? Here are some reminders from Section 3.1. First recall that

expla] = e®. Next, you need to remember that we can writea'” :\/;. It is also true

that H explf,] = exp[z f, ] becausee’e” =e**”, that multiplying a constant
Ha =a-a-- a=a" and finally thatZ:(ai -b,)*=(a-b)' (a-b).

In Section 5.2 we choose a formula, ﬁ,based on the idea of minimizing the sum of squared errors

of prediction. But the least squares principle is just one way to choose a formula. The Maximum
likelihood principle gives us an alternative logical path to follow in coming up with parameter
estimates. The probability that our model is true is proportional to the likelihood of the sample,

called 7 or more specifically Pr(y). Therefore, it makes sense to pick ﬁ such that 7 is as large as
possible.

It actually turns out to be simpler to maximize the log of the likelihood of the sample. The
maximum point of 7is the same as maximum point of L = In(4), so this does not impact anything
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except that it makes our life easier. After all, the likelihood of independent observations involves
multiplication, and the In function takes multiplication into addition which simplifies our task.
Returning to the regression model, we have

> (Y -XB)'(y-XB)

n n
L=In(y)= ——In2n — —Ino 5.19
®=-5 2 267 19
with derivative
oL 1
== X'y - X'Xp). 5.20
o~ 3a7 XY-XXB) (5.20)

If we take OL/OB = 0, multiply both sides by 2(52, and solve for B we end up with the same formula
that we came up with using the least squares principle, namely (X’X)'1X’y. Thusﬁis the least
squares and the maximum likelihood estimator. Things don’t always work out this way;
sometimes least squares and ML estimators may be different and therefore in competition with
each other. ML always has much to recommend it though. Whenever ML estimators exist, they
can be shown to be efficient [see Equation (5.13)].

But now it is time to return to the theme of this chapter, confirmatory factor analysis. We need to
be able to develop ML estimators for our three parameter matrices; A, ¥ and ®. Let us return to
that task.

5.5 Sums of Squares of the Regression Model

Now that we have a formulaﬁ for B, we can go back to our original objective function, f = e'e.

We frequently call this scalar the sum of squares error, written alternatively as SSg.. or SSE.
Now

SSprer = €'e = (y — XB)' (y -~ XP) (5.21)
=[y - X(X'X) " X'y]'[y - X(X'X) "' X'y]

=yy-—y'X(X'X) "' X'y -y'X(X'X) "' Xy +y'X(X'X) ' X'X(X'X) ' X'y
so that therefore
SSkror = Y'Y - Y XX'X) X'y
SSkror = SStotal = SSpredictable (5.22)
The error sum of squares can be seen as a remainder from the total raw sum of squares of the
dependent variable, after the predictable part of has been subtracted. Or, to put this another way,

the SSt.1 can be seen as the sum of the SSgyor + SSpredictable-

There are many ways of expressing the SSpregictable, including

yXX'X) "' X'y =p'X'y=y'Xp=p'X'Xp.
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In order to prove to yourself that these are all equivalent, substitute the formula forﬁ into each of

the alternative versions of the formula above and then simplify by canceling any product of the
form X'X(X'X)".

Taking the last version of the SSpegictable ON the right, note that
BX'XP = [B'X'I[XP] =[XB] [XB] =37 .

Thus SSpcgictabic 1 the sum of the squares of the predictions of the model, the y . Another way to
write the SSgor 1S as

ee=y'y—yXp'
=y'(y - Xp"
=y'e.

However, the quantity y'e (SSg,) is not the same as y'e since
y'e=(XB)' (y-XB)
=(B'X") (y—-XP) (5.23)

=B'X'y—p'X'XB =0.

Note that the last line above involves two equivalent versions of SSpregictanle, Which, being
equivalent, have a difference of 0. The upshot is that the predicted scores, ¥, and the errors, e, are

orthogonal vectors [Equation (1.17)] with a correlation of 0.

5.6 The Covariance Estimator for g

We can conveniently produce the ﬁvector from the covariances of all the variables; x variables

and y included. We are going to place y in the first row and column of the covariance matrix, S
[see Equation (2.12)]. The S matrix is partitioned (Section 1.4) into sections corresponding to the
y variable and the x's:

s, isl
ksk:[...y.y...g ..... y} (5.24)

The scalar s, represents the variance of the y variable, S is the covariance matrix for the
independent variables, and s, =s_ is the vector of covariances between the dependent variable

and each of the independent variables. There is no information about the levels of the y or x
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variables and so we will not be able to calculate ﬁo from S, but we can calculate all of the other k*

B values using

B=S_s (5.25)
If we need to know what the value of [30 is, we can calculate it as follows:
B() = iy - ﬁ'ix

whereX  is the mean of the dependent variable and the column vector X, contains the means of

each of the independent variables.

5.7 Regression with Z-Scores

Instead of just using deviation scores and eliminating 3,, as was done in the previous section, we
can also create a version of the B vector, B” say, based on standardized versions of the variables
and which therefore does not carry any information about the metric of the independent and
dependent variables. This can sometimes be useful for comparing particular values in the f§ vector
and other purposes.

B =(z.2,)'Z,z2, (5.26)

=R_r,, (5.27)
where Z_ represents the matrix of observations on the independent variables, after having been
converted to Z-scores, and z, is defined analogously for the y vector. The second way that we
have written this, in Equation (5.27), is by using the partitioned correlation matrix, just as we did
with the variance matrix above in Equation (5.24). Here the correlations among the independent
variables are in the matrix R_, and those between the independent variables and the dependent
variable are in the vector r . The partitioned matrix is shown below:

. ’
1 I'Xy
KRy =] oo where (5.28)
er : RXX
1 Iox, Iox
I 1 r
] e X)Xy
Rxx -
Xpe,X) rxk.,x2 1

is the matrix of correlations among the k* independent variables, and is therefore k* by k*, the
same as S_, and

XX

rXY = ryx = [r)’,?ﬁ r}’sxz o Yo Xxyx ]
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is the vector of correlations between the dependent variable and each of the k* independent
variables.

It is interesting to note that in the calculation of ﬁ as well as the standardized ﬁ* , the correlations

among all the independent variables figure into the calculation into each Bi' Of course, if Ry =1,
this would simplify things quite a bit. In this case, each independent variable would be orthogonal
from all the others and the calculation of each ﬁi could be done sequentially in any order, instead
of simultaneously as we have done above. We can also see here why our regression model is
unprotected from misspecification in the form of missing independent variables. If there is some
other independent variable of which we are not aware, or at least that we did not measure, our
calculations are obviously not taking it into account, even though its presence could easily modify
the values of all the other 8's. The only time we can be protected from the threat of unmeasured
independent variables is when we can be totally sure that all unmeasured variables would be
orthogonal to the independent variables that we did measure. How can we ever be sure of this?
We are protected from unmeasured independent variables when we have a designed experiment
that lets us control the assignment of subjects (or in general "experimental units", whatever they
might be) to the values of the independent variables.

5.8 Partialing Variance

Lets assume we have two different sets of independent variables in the matrices X, and X,. Each
of these has n observations, so they both have n rows, but there are differing numbers of columns
in X, and X,. Our model is still y = Xp but

X=[X, i X,] and

B,
B=|--1-
B
where B, is the vector with as many elements as there are columns in X, while B, is the vector
corresponding to each of the independent variables in X,. Note that in this case B, and B, are
vectors, not individual beta values. The reason we are doing this is so that we can look at the

regression model in more detail, tracking the relationship between two different sets of
independent variables. Now we can rewrite y = Xp as

. B,
=X, X,
y=[ ]{Bj

=X,B, +X,B,.

The normal equations [c.f. Equation 5.7] would be

X [BLX
X,2[1 Q]BZ_X'Zy
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but we could also look at the normal equations one set of X variables at a time, as

XX B, + X X,B, =Xy, (5.29)

XX B, +X5X,B, =Xy . (5.30)
If we substract X|X,p, from Equation (5.29) we end up with

XiX,B, =Xy - X(X,B,
which, after we solve for B3, , gives us the estimator

B = (X{X)) " Xy - (X|X,)" X|X,B, . (5.31)

The first component of the right hand side of Equation (5.31) is just the usual least squares

formula that we would see if there was only set X, of the independent variables and X, was not
part of the model. Instead, something is being subtracted away from the usual formula. To shed

more light on this, we can factor the premultiplying matrix (X]X,)™ X| to get

ﬁl = (X;X1)71 X;[y - Xzﬁz]-

What is the term in brackets? None other than the error for the regression equation if there was

only X, and X, was not part of the model. In other words, ﬁl is being calculated not using y, but
using the error from the regression of y on X,. The variance that is at all attributable to X, has

been swept out of the dependent variable y before ﬁl gets calculated, and vice versa.
5.9 The Intercept-Only Model
Define
P = X(X'X) X’ (5.32)
and define
M=1-P, (5.33)

e M=1- X(X’X)_]X’. Keeping these definitions in mind, let us now consider the simplest of
all possible regression models, namely, a model with only an intercept term,

¥ 1

90 (1], .
= Bo=n1,By -
Ya 1

In this case, the ﬁ vector is just the scalar ,BO and so it’s formula becomes
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(XIX)—I le — (171)—1 lly

— n—l lly
:[n_1 n_l Il_l]y
1 n
==Y
ns
so that our model y = Xp is just
n }A]l “n l1 ?
Yi| Y
9.|_|
Yol LY
The matrix P is given by the expression
P=X(XX)"'X
=1,0n'r
Rt 1]
n n n
1 1
|n n n
ln n  nJ
so in that case the predicted values of y are
y
. y
y=Py=

and the Sum of Squares Predictable are
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SSPredicted = y'Py = yz Yi .
The M matrix also takes on a particular form in the intercept-only model.

M=I-XXX)'X'=I-P

1 0 0] 1 1
n n n

0 1 ol (L L 1L
_ _|n n n
10 0 1| - - ... =
LN n n |

The M matrix transforms the observations in y into error, but in this case the “error” is equivalent
to deviations from the mean (in other words d, values):

_YI _y_
Y2—Y

e=My =
LYo~ Y]

The SSg.o is the quadratic form with M in the middle,

SSError = y'My = ZYI(YI _y)

=y'(y-1y)=yy-yly=y'y

which the reader will recognize as the scalar, the corrected sum of squares from Equation (2.11).

5.10 Response Surface Models

While it is known as the linear model, one can fit more complicated curves than lines or planes. It
is relatively straightforward to include quadratic or higher order polynomials in a regression
model, merely by squaring or cubing one of the independent variables (it is wise to mean center
first). For example, consider the model

Vi =By +xuB, +X121[-)’2 +X,B5 +Xizzl34~
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The second and fourth independent variables are squared versions of the first and third. In order to
demonstrate the wide variety of shapes we can model using polynomial equations, consider the
figure below where B3, and B3, are either 0 or 1:
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Chapter 6: Testing Linear Hypotheses
Prerequisites: Chapter 5

6.1 The Distribution of the Regression Model Estimator

According to Theorem (4.9), if we have a random vector a such that the variance of a is known,
V(a) = C, lets say, then we can deduce the variance of any linear combination of a. Using the
matrix D’ to create a set of linear combinations, we would have, in that case, V(D'a) = D'CD. We

can use this key theorem to deduce the variance of ﬁ, the vector of parameter estimates from the
regression model, i. e.

B=(X'X)"Xly.

Looking at the formula for ﬁ, we see that we can apply the theorem with y playing the role of the

random vector "a", and the premultiplying matrix (X'X) X' in its Oscar winning performance as
"D", creates k linear combinations from y. We know the variance of'y,

V(y) = V(XB + e) = V(e) = 6’1

since y must have the same variance as e. This is so because adding a constant to a random vector
does not change the variance of that vector, as is pointed out in Theorm (4.8). Given that, we can
apply the theorem of Equation (4.9) such that

V() =[(X'X)" X T[(X'X) ' XV
=6’ (X'X) "' X'IX(X'X)" (6.1)

=c>(X'X)".

To get to the last line we have used a variety of theorems from Chapter 1, including the associative
property of scalar multiplication [Theorem (1.29)], and the fact that if A = A/, then A = (A

which is presented in Equation (1.40). Now that we have a formula for the variance of |§, we are

getting closer to being able to make inferences about B, the population value. Of course we are
interested in the population, not just the particular sample that we happened to have observed. To
make the leap from the sample to the population we need to talk about the probability distribution

of ﬁ Another very important theorem about linear combinations comes next. Lets assume we

have a n by 1 random vector a and a constant vector b’. Then

Central Limit /b’ a, — normality as

(6.2)
n—>oo.

What this Central Limit theorem states is that a linear combination of a random vector tends

towards normality as n, the number of elements in that vector increases towards infinity. In
practice, n need only get to about 30 for this theorem to apply. What’s more, the theorem in no
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way depends on the distribution of the random vector a. To take one extreme example, a might
contain a series of binary values; 0’s or 1’s; and the theorem would still apply! Turning back to

the least squares estimator, f, if we have a sample size more than 30, we can be fairly confident

that ﬁwill be normally distributed, even if the error vector e, and hence y, are not normally
distributed. We can therefore conclude that

B=(X'X)"X'y ~ N[B, c3(X'X)']. (6.3)

It is now time to use a distribution that is applicable when the sample size is less than 30, the t-
distribution (more information can be seen in Section 4.6). Consider the normally distributed
scalar g, that is q ~ N[E(q), V(q)]. In that case the ratio

a-E@ ¢ (6.4)

VV(©@)

The subscript df on the t represents the degrees of freedom for the t-distribution, that is the
effective number of observations used to estimate V(q) using \7(q). More specifically, in the case

of a particular element of ﬁ, say ,63{, we would have

/}i - ﬂi
V(3,)

~t .. (6.5)

We have already determined V( ,61) in Equation (6.1). In order to refer to this variance better, let
us define

D=XX)" = {di}.
The superscript notation, used with the element d”, is often used to describe the elements of the

inverse of a matrix. Note that d" is the ith diagonal element of (X'X) . Now we are in a position
to say that

V@) =c’-d". (6.6)

. . . 2 .. .
All that remains to construct our t is to figure out how to estimate ¢ . This is done using

6l=s?="Emr — 1 g0 that (6.7)
n—-k n-k
V(B,)=s>-d". (6.8)

Instead of using Equation (6.7) to calculate s2, we can also use the covariance approach (see
Equation (5.25):
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2 —_—
sT =8, =8, S S-

In addition to being the empirical estimate of the variance of the e, s is also the variance of y | X,
that is, y conditional on the observed values of X.

6.2 Al - «Confidence Interval

Finally, we are ready to make statements about the population values of fi There are two broad

ways of doing this. The first, which will be given immediately below, is called a confidence
interval. The second will be covered in the next section and involves all-or-nothing decisions

about hypotheses. A 1 - a confidence interval for the element ,éi is given by

éi * ton/2,n—k Vszdﬁ (69)

which means that
Pr[Bi = toiank Vs?d" < B; < Bi + o2 nk Vs?d" } =1-a, (6.10)

where t, . is the tabled t-statistic with n - k degrees of freedom such that Pr(t >t ,,) = a/2. The
upshot is that, with a probability of 1 - o, we can capture the population value of a parameter of
interest between the minus and plus values of the confidence interval. The benefit of this
procedure is that we can pick o a priori according to our tolerance for risk. Of course picking a
smaller value of o (which reduces the risk of missing the target, ;) implies a larger value of t in
the formula which in turn expands the distance between the left and right end points of the
interval.

Despite the elegance of confidence intervals, marketers do not usually use them. Marketing theory
rarely provides us with enough information to motivate us to look at particular values of the 3. At

best, it seems our theories may be capable of letting us intuit the sign of ;. We can then decide if
we were right about our intuition using a yes or no decision, a procedure that we will now address.

6.3 Statistical Hypothesis Testing

Questions about marketing theory, as well as practitioner issues, that are explored using samples,
are often solved through the use of statistical hypothesis testing. For example, we might be
interested in testing the hypothesis

Hp: B;=c¢

where ¢ is a constant suggested by some a priori theory. It is important to note that the entire
logical edifice that we are going to build in this section is based on the presumption that this
hypothesis was indeed specified a priori, that is to say, specified before the researcher has looked
at the data. In that case we need to create a mutually exclusive hypothesis that logically includes
all possible alternative hypotheses. Thus, between the two hypotheses we have exhaustively
described the outcome space; all outcome possibilities have been covered. Given the hypothesis
above, the alternative must be

Ha: Bi# c.
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We need to acknowledge that the two hypotheses are not symmetric. For one thing, Ho is specific
while H, is more general. You will note that H, is always associated with an equality. For
another thing, the two sorts of mistakes that we can make, namely, believing in Hy while H, is
actually true; vs. believing in Hy while Hy is true; are not symmetric. Part of the definition of Hy
is that it is the hypothesis that we will believe in by default, unless the evidence is overwhelmingly
against it. In some cases we can define Hy for its “safety.” That is, if we have two mutually
exclusive hypotheses, and falsely believing in one of them, even though the other is true, is not so
damaging or expensive, we would want to pick that one as Hj,.

We now need to summarize the evidence for and against Hy and H,. Here is where the t statistic
comes in. We will assume that Hy is true. In that case,

e BB _ P-c
t="r—= =" ~1,,. (6.11)
VB Vs

We can now evaluate the probability of this evidence assuming that H is true by simply looking
up the probability of f based on the t-distribution. Specifically, we reject H if

[t > t o2 nk s (6.12)

where t,, . is the tabled t-statistic with n - k degrees of freedom such that Pr(t > t,,) = /2. The
value o can once again be chosen a priori according to one’s tolerance for the risk of falsely
rejecting Hy, an error often referred to as being of Type I. The value o is divided in two simply
because Hy has two tails, that is to say, it is the nature of H, that it can be wrong in either of two
directions.

In some sorts of hypotheses we do not need to divide o by two. If we have Hy: B, = ¢, which
implies an alternative of Ha: B, < c, there is only one direction or tail in which Hy can be wrong.
In that case we reject Hy if

(6.13)

The inequality obviously reverses direction if Hy involves a “<”. Note that one way or the other,
H, allows the possibility of an equality. The logic of hypothesis testing is based on Hy. It is the
only hypothesis being tested. Rejecting Hy we learn something, we can make a statement about
the population. Otherwise we have simply failed to reject it and we must leave it at that.

Generally speaking, those writing articles for marketing journals tend to automatically pick o =
.05. 1t’s a social convention, but the arbitrariness of “.05” should not obscure the value we get out
of picking some value a priori. In some practitioner applications the two possible types of errors
can be assigned a monetary value and the choice of o can be optimized.

6.4 More Complex Hypotheses and the t-statistic

It is possible to look at more complex questions, for example is B; = B,? We will write the
question as a linear combination of the f§ vector:
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H,:ap=c

BT
By
B,
Bs

Pi- |

We can create a t-test using the same technique as before as long as we can figure out the
denominator of the t. The theorem we discussed at the beginning of the chapter, Theorem (4.9)
which lets us derive the variance of a linear combination of a random variable can guide us once
again:

V(@a'B)=a'V(h)a
(6.14)
=c’a'(X'X) " a.

By substituting the empirical estimate, s’ for the population value 02, we get the formula for the t
that lets us test the linear hypothesis Hy against the alternative, Hy: 2’ # ¢

f:L (6.15)

ys’a'(X'X)'a
As before, we would reject Ho if [ £ >t,,,, -

We might note that the basic t-test discussed in the previous section to test Hy: B, = 0 is a special
case of this procedure with a’= [0 O - 0120 - 0]. In general, if you can quantify a
hypothesis as a single linear combination, so that the right hand side is a scalar and there is just

one equal sign, you can test it with a t-test. But we can test even more complex hypotheses than
these, and that is the subject of the next section, Section 6.5.

6.5 Multiple Degree of Freedom Hypotheses

We will now look at more complicated hypotheses that require more than a single linear
combination. Where before our hypothesis was represented in a’, now we will have a series of
hypotheses in the q rows of the hypothesis matrix A. We can simultaneously test all q of these
hypotheses,
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H,:ABp= ¢
(6.16)
a) ¢
a’ c
HO . 2. B _ 2
3;4 c,

As an example, suppose we wanted to simultaneously test that 3, = 0, and that 3, = 0, or more
concisely, that B, = B, =0. We can use an A matrix as below,

Bo

[0 0 1 0} B, H
H,: = .
000 1|[B] |0

LBs |

The flexibility of linear hypotheses cannot be exaggerated. Suppose we want to test that a set of
coefficients are equal; B, = 3, = B;. That can be coded into the A matrix as

By |

[o 1 -1 0] B H
H, : = .
01 0 —1|[B] |0

L5 ]

To test these sorts of hypotheses, we will be using the F distribution, which is more general than
the t. In fact, an F with one degree of freedom in the numerator is equivalent to a t squared. (This
is briefly discussed in Section 4.7.) An F is a ratio of variances. Under the null hypothesis, both
the numerator and the denominator variances measure the same thing so that the average F is one.
In the case of the linear hypothesis Hy: AB = ¢, the numerator is the variance attributable to the
hypothesis. In this context the variance is called a mean square - in other words it is an average
sum of squares. To calculate the sum of squares that will be used for this mean square, we have:

$S, = (Ap—c) [AXX)"A|" (Ap-0). (6.17)

Since B is a column vector, and this is a single quadratic form, SSy is a scalar. For this to work the
A matrix, which is q by k, has to have q independent rows, and certainly q must be less than or
equal to k. Otherwise, the matrix within the brackets will not be capable of being inverted. Given
that A has q independent rows, we can set up the ratio

SSy/q
SS. /n—-k oK

Error

(6.18)

which can be used to test the hypotheses embodied in the A matrix.
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Typically a variance is an average sum of squares divided by "n - 1" which represents the degrees
of freedom of that variance. In this case, in the numerator, the average is being taken over the q
rows of A. In other words, the number of observations - the degrees of freedom - is q. The
denominator, which the reader should recognize as the variance of the e;, called sz, has n — k
degrees of freedom. (We remind you that k represents the number of other parameters estimated
in the regression model. We have already estimated values for thep vector.) leaving n — k

. . . 2
observations for estimating s".

6.6 An Alternative Method to Estimate Sums of Squares for an Hypothesis

Let us return to one of the multiple degrees of freedom hypotheses we looked at above,

Po

[0 0 1 0} B H
H,: = .
000 1||B] |0

B

We are hypothesizing that two of the betas are zero, which implies that the independent variables
associated with them vanish from the regression equation, being multiplied by zeroes. Lets call
the model that is missing X, and x, the “Restricted Model.” We could calculate the Sum of
Squares Error for this model and compare it to the usual Sum of Squares Error. The difference,
illustrated below, provides an alternative way of assessing the hypothesis:

SS1 = SSkor (Restricted Model) — SSg,: (Full Model)

Since the restricted model has fewer variables, it’s SSg,, cannot be less than the SSg.,, for the full
model, thus SSy must be positive; it is after all a sum of squares, so it had better be positive!

6.7 The Impact of All the Independent Variables

We often wonder if any of our independent variables are doing anything at all, if between them,
we are achieving any prediction or explanation of the dependent variable. We can express this
question using the hypothesis

Hy: B =p==p=0. (6.19)

The only B value missing from the hypothesis is By, which is usually not of any theoretical
importance. The hypothesis asks if we can get any additional prediction, above and beyond the
mean which is represented by 3,. The F given below,

SSpor (Restricted to B,) =SS,
SSeor (Full)/n —k

(Full)/k*

F= (6.20)

can be compared to the tabled value of F,, + »«. We can also summarize the predictive power of
all the independent variables (except x,) using Big R Squared, also known as the squared multiple
correlation or SMC, shown below:
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SSg.or (Restricted to B,) —SS
SSErtor (Full)

Error (FULL)

R? =

(6.21)

Now we will look at some alternative formulae for these Sums of Squares for Error. For example,

SS;..; (Restricted to B,) = Z(yi -y)® and

SS g (Full) = D" (y, =507 = D el

1

Using these terms, we can say that
D=9 =2 -9+ D (v;— ) orin words (6.22)
Corrected SS = SS Due to Real Independent Variables + SS Error.
We can prove this by looking at the definition of SSg,:
e'e=y'y -BX'Xp

=y'y-y'y.

By rearranging we have
Y'y=yy+e'e
yy-ny=§§onyeete

209 = DT (v -9

This allows us to restate R’ as
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209 =Y e
209’

2l
IS

2.6:i-9°
209’

In summary, R’ summarizes the proportion of the corrected Sum of Squares, and of the variance,
of y which is explained by each of the independent variables, x,, X,, ..., X,.. The hypothesis H: p2
= 0 (note that rho, p, is the Greek equivalent to r) is equivalent to the hypothesis that B, = B, = -

=B =0.

RZ

1

6.8 Generalized Least Squares

There are many circumstances where we cannot believe the Gauss-Markov assumption. Suppose
for example that the variance of the errors is not oI but rather follows some more general form,
o'V where V is a symmetric matrix. If V is diagonal, the technique of this section is called
weighted least squares or WLS. IfV is symmetric, it is called generalized least squares, or GLS.
Of course, if the elements of V are not known, we would run out of degrees of freedom trying to
estimate the elements of both B and V. But in many cases, we have an a priori notion of what V
should look like. For example, we can take advantage of the fact that the variance of the
population proportion w is known and is in fact equal to w(1 - w)/n. If our dependent variable
consists of a set of proportions, we can modify the Gauss-Markov assumption accordingly and
perform weighted least squares. Instead of minimizing e’e, we minimize

f=e'V'e, (6.23)

where the diagonal elements of V consist of the values n(1 - w)/n for appropriate to each observed
proportion.  We can look at this technique as minimizing the sum of squares for a set of
transformed errors. The transformed errors have constant variance and therefore are appropriate
for the Gauss-Markov assumption. Our estimate of the unknowns becomes

B=[XV'X]'XV'y. (6.24)
We can estimate o using
SZ — SSErmr
n-k

where
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St = (¥ =XB)'V ' (y - XB).
We can construct t-statistics that allow us to test hypotheses of the form
Ho: Bi =0

. o 2 ST .
using the ith diagonal element of s (X'V X) in the denominator to create a t. One can also test
one degree of freedom hypotheses such as

af=c
using
A
I: _ a B Y
s’a'(X'V'X)"'a
and for more complex hypotheses of the form
Hy:AB-¢c=0

‘We use
SS,, = (AB-¢)[AX'V'X) AT ' (AB—¢)

. L 2. .
to construct an F ratio numerator, with s in the denominator.

This result is discussed in more detail in Section 17.4.

6.9 Symmetric and Idempotent Matrices in Least Squares

Define P = X(X'X) X' and define M =1 P, i.e. I-X(X'X) X. Now recall Equation (5.21) for
the SSgror

e/e — y!y _y/X(X/X)—l X/y
=y'ly-y'Py
(6.25)
=y[I-Ply
=y'My.

What this tells us is that the SSg,, is a quadratic form, with the matrix M in the middle. The
SSpredicted 1S @ quadratic form also, with P in the middle,
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y'X(X'X)"' X'y = y'Py

and as we might imagine, the raw total sum of squares of the dependent variable is a quadratic
form, with the identity matrix in the middle:

Yy=yly.
So now we have some relationships among SStol, SSpredictable A0d SSgror, Namely
SStotal = SSpredictable T SSError
y'ly =y'Py + y'My and (6.26)
I=P+M. (6.27)
At this point we might note that the Identity matrix I is of full rank (Section 3.7), that is to say, |I|
# 0, but both P and M are not with P having rank k and M rank n - k, the same as their degrees of

freedom.

What’s more, P transforms y into ¥, and M transforms y into e as can be seen below:
¥ = XB = X[(XX)'XYy]
=[X(X'X)"' X1y (6.28)

and

e=y-Xp=y-X[(XX)"Xy]
(6.29)
= My

So that we can think of P as the prediction transform or prediction operator, that is, a set of linear
combinations that transform y intoy, while M is the error transform or error operator that

transforms y into e. These matrices have some even more unusual properties, namely:

Symmetry M=M,P=P (6.30)
Idempotency MM=M,PP =P, (6.31)
and also,
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1' Mn=1011

1% nn

1, P =0 and (6.32)

nn-n- 1

PM=_0

More details of on the importance of M and P can be found in Section 4.5. In summary, since
YYy=yly=yPy+yMy,

we can show that these sums of squares components are distributed as Chi Square.
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Chapter 7: The Analysis of Variance
Prerequisites: Chapter 6

7.1 History and Overview of ANOVA

The analysis of variance is often used to test for group differences — very frequently different
groups of consumers who have been exposed to various treatments.  The word treatment
obviously makes reference to the early days of the technique from biology early in the 20"
century. In the context of marketing, a classic and simple example might involve different ads
viewed by the different groups. Of course ANOVA is applicable to analyses of pre-existing
groups as well.

The historical roots of ANOVA go back long before the existence of computers and before text
writers acknowledged that the regression technique of Chapters 5 and 6, and ANOVA, are
basically one and the same. Of course, today, all the major statistical packages compute ANOVA
as a special case of regression. And understanding ANOVA in this way will add to the student’s
intuition about what is going on. However, there are at least two different ways of notating
ANOVA: an older method that relied on calculating machines and that uses multiple subscripts on
the dependent variable, and the newer way that is optimized for computer calculation that uses one
subscript as the observations are stacked in the vector y. In what follows we will offer a brief
review of the older notation while demonstrating how it relates to the newer regression-centric
view.

In what follows we will also assume that we have some sort of qualitative variable that divides the
population into A groups indexed by a=1, 2, -, A. The observations from these groups might be
represented as yj,, that is, observation i from group a. A pictorial representation of the situation
might look like the following

Yu Yi2 Yia

Yo Y2 Yoa

Yn,l YnZZ YnAA
Group 1  Group 2 Group A

You can see that the second subscript is indexing group membership while the first keeps track of
the individual within that group. Further, in group a, the sample size is n, with that observation
being the last case in group a. This is known as a one-way analysis of variance, since there is but
a single qualitative variable that identifies group membership. The traditional test of the null
hypothesis involves the population means and whether they are all equal, viz.

Hpopy=p, = =u,. (7.1)

In general, we would estimate the population mean p, using the sample meanp, =y,. The
subscript for they,,the “-a” is taken from Equation (1.2) and is now holding the place of the

eliminated first subscript in the data, the one that tracks the individual observation. Remaining
with the older tradition, we say that our model is
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=pu+a, +e., 7.2
Y1a a 1a

with u being the overall mean, and the o, quantifying the impact of group membership. The e;,
represent error in the model, and in this case we can say that it is an error particular to group a.
The problem is that we have exactly A unique groups — and A values of y, in our data — but we

have A + 1 parameters. That is, there are A o, plus one p. We need to restrict the o, in some way.
This problem is related to the idea that in the statement of the null hypothesis in Equation (7.1),
there are A — 1 equal signs, not A of them. We are not interested in the levels of the group means
per se, but in the differences between the levels of the group means. It turns out there are at least
three popular ways to parameterize this model (of course there are an infinite number of ways to
do it in general). The first one, covered next, is called effect coding.

7.2 Effect Coding

One thing we can do is impose the restriction

Zaa =0, (7.3)

for example by settingat, =—a,, —a, —---—a,_,. The a, represent the effect of being in group a:

oA, =Y, Y. (7.4)
where y . is clearly equivalent to p.

At this time, let us think about how this model, as parameterized above, relates to regression. In
the regression model y = XB + e, the qualitative independent variable must be represented
somehow using the columns of X. The o, must end up in the B matrix, or at least A — 1 of them
must do so. We can, as we saw above, solve for the last one by subtraction. To illustrate how to
implement effect coding lets say we have A = 4 groups. We do not have to show all of the
subjects in all of the groups since the model for all of the subjects within each group must be
identical. It will suffice to show the model for the i-th subject in each group. To the extent that
any two members of the same group do not have the same score, this contributes to the error term.
Now, our model will be

5’{1 1 0 0 Bo

V. 1 0 1 0

?\/12 — Bl (75)
Yis 1 0 0 1 B,

9i4 I -1 -1 -1 |B;

It is worth contemplating the columns of X for a bit. The first one is clearly just the classic y-
intercept, just as it has always been in Chapters 5 and 6. The last three columns code for group
membership. The first vector coding for groups has a plus one for group 1 and a -1 for the last
group. Zeroes appear in every other row of that column. The second group membership vector
repeats the pattern but the plus one goes against group two. Finally, the last vector has a one in
the next to last position, a minus one in the last position and zeroes elsewhere. To summarize,
each column x; j = 1, 2, -+, A-1) gets a 1 for group j, a negative 1 for group A, and everything
else is null. Writing out the model in scalar terms reveals
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Vi =Bo +B1s
9i2 :Bo +Bzv
Vis =By +B; and

Yis =Bo =B =B, =B -
The null hypothesis
H,:B,=B,=p,=0
is mathematically equivalent to
Hoipyp=p, =p; =p, .
While the proof of this equivalence will be left to the interested reader, one can see that both

statements have three equalities. Using the methods of Chapter 6, we can set up the hypothesis
matrix

>

Il
o o o
o o
o = o
- o o

which having three rows, provides an overall three degree of freedom test of no mean differences.
Individual one degree of freedom tests for any of the 3; may or may not be of interest. Hy: B; =0 is
equivalent to Ho: p; - u = 0, that is, that there is no significant effect of being in group j.

7.3 Dummy Coding

In our model,
y{a :u+aa +eia’ (76)

there are multiple ways to resolve the ambiguities and identify the model. We now cover the
second one in which we impose the restriction

a,=0 (7.7)
which then implies that
n=y,and
a‘a = ?-a - ? A

The coding for the design matrix looks like this:
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Y. 1 [1 1 0 0][B,]
¥ 101 0||p,
Vs oo B,
9] [1 0 0 0]|B,s]

The columns of X are often called dummy variables since each value is either a 'l' or a '0'. This
means that

g’il :[30+Bl’
Viz =B + B,
Vis =B +B; and

5’14 =Bo-

You can see that column x; gets a 'l' for group j, j =1, 2, -, A - 1. Everything else gets a'0'. As
before, Hy: B1 = B, = B3 = 0 tests Hyp: 1y = o = 3 = Ly, and we can construct the A hypothesis
matrix as above in equation (7.5). Test of individual B; values are probably not interesting since
Ho: Bj = 0 is equivalent to Hy: p; - pa = 0. However, this might be interesting if the last group,
group A, is some sort of control group and the researcher wants to compare some of the other
groups to the last one.

Note that both systems of coding lead to the same 3 degree of freedom F with the same value.
What varies is how these three degrees of freedom are partitioned. And now we look at the final
method of partitioning group effects, orthogonal coding.

7.4 Orthogonal Coding

In the previous two methods of coding, effect and dummy coding, the columns of X are correlated
which is to say they are not orthogonal, a concept defined in Equation (1.17). In this section we
describe a method of coding the design matrix in such a way that X'X is a diagonal matrix. Of
course this means that the columns of X are all mutually orthogonal, meaning that the inner
product is zero. There are very many ways of doing this, but here is one simple scheme that can
be used to create orthogonal columns in X:

1 -1 -1 -1
11 -1 -1
1o 2 -1
10 0 3

The pattern should be clear - column j has j '-1's and one 'j'. Here we see that Hy: B, = 0 is
equivalent to Hy: w; = wp; Ho: B, = 0 is equivalent to Ho: (1, +11,)/2 =p,;and Hp: B, = 0 is
equivalent to Ho: (1, + [, +15)/3 = py.
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One can modify the scheme to test certain planned comparisons of interest. Suppose we had
planned a priori to test Hy: p, = p;. We can set the second column of X to embody this
comparison:

10 2 -1
11 -1 -1
B O R
1 0 0 3

which the reader can see as effectively identical to the example immediately above, but changing
the order of the rows. At this point we need only test the hypothesis that f; = 0.

1T, :H3+u4
5

Now suppose we wish to compare groups 1 and 2 against 3 and 4, i.e. that H

We can use X as below:

1 1 1 1

r 1 -1 -1
X =

I -1 1 -1

I -1 -1 1

Here we can test our hypothesis using ,. The pattern of signs in the second column of X (the
column pertaining to ;) allows you to interpret the sign of 3,. If B, is positive it means that the
first two means are greater than the second two.

Note that in all the cases we have discussed in this section, we have orthogonal columns of X.
This leads to an ease of interpretation of the f's.

7.5 Interactive Effects

In many cases in marketing the impact of one independent variable depends on the specific values
of another independent variable. For example, we might find that as price increases, consumer
purchase intention is reduced, except when there is the presence of advertising. This is illustrated
in the hypothetical interaction plot below:
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Purchase
Intent

Low Med Hi

Price

An interaction limits our ability to generalize. If you were to summarize the impact of Price on
Purchase Intent, you would have to take into account the value of the other independent variable,
Advertising. By the same token, if you were to try to describe what effect Advertising has on
Intent, you would have to pull Price into the explanation. An interaction is characterized by non-
parallel lines in an interaction plot, as is shown above. Interactions of many forms are possible,
but the linear model can subsume any interactive effect by including columns in the design matrix
X which consist of the products of other columns of X. To see this, look at the design matrix
pictured below:

Visia 1 -1 -1 -1 1 1}[B
Vin 1 1 -1 -1 -1 —1||B
g’iMA -1 1-1-1 1/B
Sl (11 1 -1 1 —1||p,
iliLA 1 -1 0 2 0-2/|B
V] 11 0 2 0 2f[B]

¢ L1
Ad: Avs.N Price: H, M. L Xs = XaXs

X, =X,X,

The subscripts on the dependent variable values run from L to M to H (low, medium and high) to
index the level of the price variable and from A to N to indicate advertising vs. no-advertising.
Column 0 of the X matrix codes for the usual intercept term. Column 1 uses orthogonal coding to
register the difference in the level of advertising, while columns 2 and 3 use orthogonal coding to
track the 3 levels of Price. With three levels, Price has 2 degrees of freedom, which is to say, 2
columns in X. The fourth column of X is the product of columns 1 and 2, while the fifth column
is the product of columns 1 and 3. The interaction between Price and Advertising also has 2
degrees of freedom. The reader might notice that all six columns of X are mutually orthogonal.
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7.6 Quantitative Independent Variables

We can actually use the linear regression model to fit a non-linear model. Almost any quantitative
function can be approximated by a polynomial of sufficiently high order. Consider the model
below:

Yi =By + x5 +Xi2ﬁ2 +Xi3ﬂ3 + X B Fe (7.8)

To make this model work, one should first deviate the x; from the mean to avoid problems of high
correlation between the columns of the X matrix. With a relatively small number of levels of the
quantitative independent variable, you can use the method of orthogonal polynomials instead.
Any function can be represented as a polynomial with sufficiently high order. A curve with one
elbow can be expressed as a quadratic function, one with two elbows can be imitated with a cubic
function, and so on from quartic, quintic, etc. For example, we might be concerned with the shape
of the relationship between the length of an ad viewed by subjects, and their attitude towards that
ad. Imagine that one group saw a 1 minute ad, another a 2 minute ad, and there were also 3 and 4
minute groups. Presuming that the ad is affective, the relationship could take on a variety of
forms, such as those pictured below:

Attitude Attitude Attitude
Length of Ad Length of Ad Length of Ad

On the far right is pictured a very simple linear assumption, in the middle a curve with one elbow,
and on the left a more complex curve requiring a cubic component. We might construct the design
matrix as below using

I 1 1 1

12 4 8
X =

13 9 27

1 4 16 64

but it would be smarter to use a columns that were not so highly correlated. As mentioned above,
if you column-center the linear component and then use it as a basis for creating the other
columns, this will help. You can also use orthogonal polynomials (see the tables in Bock 1975 for
example):

1 -3 1 1
1 -1 -1 -3
X= .
1 1 -1 3
1 3 1 -1
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One could then test the necessity of the cubic term, assuming a linear and quadratic component
using a t-test. If that proves non-significant, one could go on and test the necessity of the
quadratic term.

7.7 Repeated Measures Analysis of Variance

A special case of the analysis of variance occurs when we have a set of commensurate variables,
or commensurate measures. The expression implies that the same scale is repeatedly applied on
several measurement occasions. For example, perhaps consumers are asked to rate four brands
using a particular measure. Repeated measures are multivariate in nature, meaning that there is
more than one dependent variable. In the example with four brands, there would be four
dependent variables. We define y; as the measurement on person i, on measure j, withi =1, 2, -,
nandj=1,2, -, p. There are two ways to treat such data. We can place all of the measurements
in a matrix, Y, with a row for each subject and a column for each measure. This is the
multivariate approach, a topic covered in Chapter 8. For now, we will note that with four brands,
and p = 4, the hypothesis that the means of the four brands are equal, i.e. that the columns of Y

have equal means, is equivalent to the hypothesis that the three columns of Y below have means
of zero. The matrix Y is given by

Y=YM (7.9)
1 1 1
- -1 1 1
Y=Y . (7.10)
0 -2 1
0 0 -3

The hypothesis matrix M, when used to postmultipy the original data matrix Y, transforms the
columns of Y into new columns in Y. The first new column consists of the difference between the

old columns 1 and 2. The second new column in Y is the difference between the combination of
columns 1 and 2 and column 3, and so forth.

The univariate approach stacks all of the data in a single vector, called y, in such a way that each
subject's data appears contiguously, i.e.

y=[ly, vy, - Yo Yau Y ot Y v Y Yn2 v y@]

We can then say that

Z10)---10
G s et
0'x!--10
V(y) =| ===t (7.11)
coe : cee : ...:...
Bt St bl
00} x|

where each X and each 0 is a p by p matrix. There are n of them, so that the entire variance matrix
of y is np by np. That the covariance matrix of each subject, X, is homogeneous or identical from
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one subject to the next, is only an assumption, analogous to the assumption of homogeneity of
. 2,
variance of the scalar ¢ in regular ANOVA.

To use the univariate approach to repeated measures, the variance of the transformed measures
must be homogeneous and independent, that is

M'IM = c’1 (7.12)

where the M matrix is the hypothesis matrix from above, X is the p by p (in our example with four
brands, four by four) covariance matrix of the original measures, and o1 is a scalar matrix with
identical values along the diagonal (three identical values in our example with four brands). Often
this assumption is called sphericity. If this assumption is met, we can use univariate analysis of
variance as will now be described using an example.

7.8 A Classic Repeated Measures Example

Imagine that we have three factors including one between subjects variable that divides subjects
into two groups, a within-subjects factor with three levels and a within subjects variable that has
four levels. All told our design is a 2 x 3 x 4 design, with the three factors named A, B and C.
We can further imagine that we have 10 subjects, and since each subject is measured 12 times
(since the repeated measures part of the design, B x C, involves 12 measures), we have a total of
120 data points. The results of such an ANOVA are typically described in an ANOVA table. A
table for this design could look like this;

Source of Variance df | Error Term
A 1 S
S(A) 8 -
Between-Subjects Total 9 -

B 2 S(A)-B
C 3 S(A)-C
BC 6 S(A) - BC
AB 2 S(A)-B
AC 3 S(A)-C
ABC 6 S(A) - BC
S(A)-B 16 | -

S(A)-C 24 | -

SA(A) - BC 48 | -
Within-Subjects Total 110 | -

TOTAL 119 | -

The notation in the table bears some explanation. S(A) is used to represent Subjects within levels
of the A factor. In other words, subjects are nested within groups since the same subject does not
appear in more than one group. In contrast, Subjects are crossed with the two repeated measures:
B and C. In addition, the factor Subjects is a random effect. This means that the "levels" of
Subjects were randomly sampled from some larger population to which we would like to
generalize our results. In contrast, A, B and C are fixed effects whose levels are chosen for their
inherent interest to the experimenter, and hopefully for that person, the reviewers.

You might note that the correct error term for the grouping factor is Subjects within groups. The

correct error term for any repeated measures factor is that factor by Subjects interaction. In
general terms, consider a purely within-subject effect, w, a purely between-subject effect, b, and
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their interaction, wb. Either w or b may be main effects, interactions, or special contrasts. The
error term for b is Subjects nested in groups. The error term for W is Subjects - W and the error
term for wb is also Subjects - w. Homogeneity of Subject variance within groups is a needed
assumption, as is the spherecity of transformed measures as described above in Equation (7.12).
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Chapter 8: The Multivariate General Linear Model
Requirements: Sections 3.4, 3.5 - 3.8, 4.3 Chapter 7

8.1 Introduction

The main difference between this chapter and the chapters on the General Linear Model; 5, 6 and
7; lies in the fact that here we are going to explicitly consider multiple dependent variables.
Multiple dependent variables are to some extent discussed in Chapter 7 in the context of the
analysis of variance. In that chapter, however, we made an assumption about the error distribution
which allowed us to treat the problem as essentially univariate [see Equation (7.12)]. In this
chapter, we will be dealing with multiple dependent variables in the most general way possible,
namely the multivariate general linear model. Before we begin, it will be necessary to review
some of the fundamentals of hypothesis testing, and then after, to introduce some mathematical
details of use in this area.

8.2 Testing Multiple Hypotheses

In Chapter 6, we covered two different approaches to testing hypotheses about the coefficients of
the linear model. In Equation (6.15) we had

a'B—c

Js?a'(X'’X)'a

that allows us to test one degree of freedom questions of the form a'f = ¢, while in Equation (6.18)
we have the test statistic

f:

SS,/q
SSpor /0 —k

Error

ﬁ:

that allows us to test multiple degree of freedom questions A = C. In the former case we have n -
k degrees of freedom, and in the latter, q and n - k degrees of freedom. In that chapter we made
the implicit assumption that these tests had been planned a priori, and that they were relatively
few in number. In the case of multiple dependent variables, this second assumption becomes far
less tenable. We begin by discussing a way to test hypotheses even when there are a large number
of them. We then discuss the case where this large number of hypotheses might even be post hoc.

8.3 The Dunn-Bonferroni Correction

What can we do if we wish to test a large number of hypotheses, say, H1, Hy, -, H,? For any
particular hypothesis, we can limit the probability that we reject Hy when it was indeed true of the
population, that is we can limit

Pr(Type I Error on H;) = a...

But what is the probability of at least one Type I error in a sequence of r hypotheses? To delve
into this question it will be useful to utilize the notation of Set Theory, where U symbolizes union
and N symbolizes intersection. The probability of at least one Type I error is
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ao* = Pr(Type I error on H; U Type I Error on H, U -+ U Type I Error on H; ). (8.1)

We can think of o* as the overall a rate, the probability of at least on Type I Error. Define E, as a
Type I error event for H,. From probability theory, with r = 2 hypotheses, lets say, the situation is
illustrated below:

Thw Oubnoms Spase

.

————— ,..--'l

Ty

Two parts of the outcome space are shaded, the two parts that correspond to E, (a Type I Error on
H,) and E, (a similar result on H,). There is some overlap, namely the part of the space
comprising the intersection of E, and E,. It can be shown that

Pr(E, VE,) =Pr(E,) + Pr(E,) - Pr(E, N E,).

Needless to say, one has to subtract out the Pr(E, M E,) so that it is not counted twice when adding
up Pr(E,) + Pr(E,). Forr=3 hypotheses we have a diagram as below

and we can say
Pr(E, VE, U E3) =Pr(E,) + Pr(E,) + Pr(E;) -
Pr(E, nE,) - Pr(E, N E;) - Pr(E, N E,) + Pr(E, " E, N E,).

Here, we needed to subtract all of the two-way intersections but then we had to add back in the
third way intersection which was subtracted once too often. In any case, it is clear that the simple

sum of the probabilities, ZPr(Ei) is an upper bound on the probability of at least one Type I

Error since we have not subtracted out any of the intersecting probabilities. We can then safely
say that

Pr(E, UE, U UE) < Pr(E,) + Pr(E,) + - + Pr(E,).
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Now of course, Pr(E,) = o, = a for all i, so in that case we can state

a*=Pr(E, UE, U~ UE) < Y PrE) =D a

in which case
a*<r-a.

If we select a so that

—=<a
r

we set an upper limit on our overall a.. For example, with r = 10 a priori hypotheses, if I want my
overall Type [ rate to be a* = .05, I would pick o = .05/10 = .005 for each hypothesis.

This logic is of course flexible enough to be applicable to any sort of hypotheses whether they be
about factor analysis loadings, differences between groups, or tests of betas. A problem with this
approach becomes apparent when r gets big. It then becomes very conservative. At that point it is
reasonable to use a different logic, a logic that is also applicable to post hoc hypotheses. We now
turn to that.

8.4 Union-Intersection Protection from Post Hoc Hypotheses

This technique, also known as the Roy-Scheffé approach, is one that protects the marketing
researcher from the worst data sniffing case possible, in other words, any post hoc hypothesis. As
with the Dunn-Bonferroni test, it is applicable to any sort of hypothesis testing. And as with the
Dunn-Bonferroni the overall probability of at least one Type I event is

o* = Pr(Type I error on H; U Type I Error on H, U --- U Type I Error on H, )
=Pr(E,VE,u - UE).

This probability is equivalent to 1 - Pr(No Type I Events). Define the complement of E; as Ei, a
non-Type [ event. We can then re-express the above equation, expressed as a union, as

a*=1-Pr(E, "E, n---NE,). (8.2)

which is instead expressed as an intersection. A commonality to all hypothesis testing situations is
that Ei occurs when the calculated value of the test statistic, éi, exceeds a critical value, 0,.

Perhaps 0, is a t, and F, or an eigenvector of E'H. In any of these cases,

o*=Pr(6, <0, "0, <6, N---NH, <0,)
(8.3)

=1-Pr(H,, <0,)

max
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where émax is the largest value of 0 that you could ever mine out of your data. Here is an example
inspired from ANOVA. Suppose we wanted to test

Hp: ¢'p=0

where p=[u, p, -+ p,] is the vector of population means from a one way univariate

ANOVA, in other words the topic of Chapter 7 where the interest is on testing hypotheses about
differences among the groups. Here we wish to be protected from

£2 N2 Sz '
tmax_(cy) —cCc.
n

Picking elements of the vector ¢ so as to make this t as large as possible leads to the Scheffé
(1959) post-hoc correction. More information on post hoc (and a priori) tests among means can
be found in Keppel (1973).

8.5 Details About the Trace Operator and It's Derivative

The trace operator was introduced in Chapter 1. To briefly review, the trace of a square matrix,
say A, is defined as Tr(A) = Za

Tr(-) follow. Assuming that A and B are square matrices we can say

i.e. the sum of the diagonal elements. Some properties of

i 2

Transpose Tr(A) = Tr(A") (8.4)
Additivity Tr(A + B) =Tr(A) + Tr(B) (8.5)
Then, for A m - n and B n - m we have

Commutative Tr(AB) = Tr(BA) (8.6)
which further implies, for C m - m

Triple Product Tr(ABC) = Tr(CAB) (8.7)
In Chapter 3, we discuss the derivative of a scalar function of a vector, and a vector function of a

vector. Here we want to look at the derivative of a scalar function of a matrix, that function being,
of course, the trace of that matrix. To start off, note that by definition

[of(X) of(X)  aof(X)]
0x, 00X, 0X,,
of(X) of(X) of (X)
of(X)
G—X_ 0X 5, 0X 5, 0%y, | (8.8)
of(X) of(X)  of(X)
_axml aXm2 axmn_

where f(X) is a scalar function of the matrix X. Now we can begin to talk about the Tr(-) function
which is a scalar function of a square matrix. For A m - m we have
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OTr(A) _

8.9
A (8.9)
For A m - n and B n - m we can say
OTr(AB) _ B’ (8.10)
0A
which also implies, from Equation (3.19)
Otr(AB) _ B. (8.11)
OA’
Finally, assuming we have A m- mand Bm - m,
Ou(ABA) _ giB)A. (8.12)
O0A

8.6 The Kronecker Product

We now review the definition of the Kronecker product, sometimes called the Direct product,
with operator ®. By definition,
quzmAn®qu = {aijB} . (813)

mp

For example,

)
[N

2
o o o o
N

a;b
|:a11:|®|:b11 b12:|= ay by,
4y b, by ayby,

a,b

[ IR S

Here are some properties of the Kronecker product. We can say that

Transpose (A®B)=A'"®B'. (8.14)

For Am-n,Bn-pandCp - q, it is the case that
Associative AB® C=A®BC. (8.15)
ForAandBm-nandCp-q,

Distributive A+B)®C=A®C+B®C. (8.16)

90 Chapter 8



ForAm-n,Bn-pandCq-randDr s,

(A ® C)(B® D)= AB ® CD. (8.17)

8.7 The Vec Operator

For a matrix A, lets say m by n, we define

vec(A) =vec| :[a;‘ a, - al ] (8.18)

While other definitions of Vec(+) are possible, this one, that does so one row at a time, will prove
useful to us when we start to look at the multivariate GLM. In particular, the following theorem
will be quite useful. For Am-n,Bn-pandCp-q,

Vec(ABC) = (A ® C') Vec(B). (8.19)

8.8 Eigenstructure for Asymmetric Matrices

Suppose we needed to maximize x'Hx subject to x’Ex = 1. Then

f(x) = x'Hx - M(x'Ex -1) (8.20)
and to minimize we set
m=2Hx—27»Ex =0. (8.21)
19) ¢
Rearranging a bit we have
(H-AE)x = (E H-ADx =0. (8.22)

You will note the eigenstructure discussed in Chapter 3 is a special case of the current discussion
1

with E = I. In our case, as E H is asymmetric, the eigenvectors are not orthonormal [defined in
Equation (3.33)]. Instead we have the relation

E'H=XLX . (8.23)

. . -1 o
For symmetric matrices we have had X = X', but not in this case.

8.9 Eigenstructure for Rectangular Matrices

For completeness, we note that any m - n matrix A or rank r can be decomposed into the triple
product
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A=XL"V (8.24)
where X is m - r, L”isr-rand Visn-r. Thisis called singular value decomposition. The
matrix X contains the left eigenvectors of A while V contains the right eigenvectors of A. Further,

V'V =Tand X'X =1. There are important relationships between the eigenvalues of a rectangular
matrix and a cross product matrix. We have

A’A = (XLV) (VLX) = XLX' (8.25)
and
AA’ = (VL'U) (UL"V") = VLV’ (8.26)

If A is already symmetric then A’A = AA'so X =V.

8.10 The Multivariate General Linear Model

The multivariate general linear model is a straightforward generalization of the univariate case in
Equation (5.3). Instead of having one dependent variable in one column of the vector y, we have a
set of p dependent variables in the several columns of the matrix Y. The model is therefore

5’11 5’12 91p Loxy o X Bor B Bop
Yo Yu 5’2;7 Ioxy o Xpu || By B Blp

= (8.27)
_9np 5’np 9np_ _1 Xn2 Xnk*_ _Bk*l Bk*Z Bk*p_

which, as you can see, implies that the number of columns of the B matrix match the number of
columns of the Y matrix. Perhaps this concept is better represented using the dot subscript
reduction operator (Section 1.1), which allows us to present the model as

[)A"l y-z y«p]:X[B-l B-z B«p] (8.28)

with each column of Y entering into a regression equation with the corresponding column of B
serving as the coefficient vector. We can express the model most succinctly by using

Y =XB. (8.29)
Next we define the n - p error of prediction matrix as g, i. e.

£e=Y-Y

so that
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Y=XB+e. (8.30)

8.11 A Least Squares Estimator for the MGLM

How do we come up with estimators for the unknowns in the B matrix? When Y the error e was
only a vector, as in Chapter 5, we could pick our objective function as e’e. The matrix €'e on the
other hand, is not a scalar but a p - p sum of squares and cross products matrix. In this case what
we do is to minimize the trace of €' as we will now see. Our objective function is
f="Tr[e'e] (8.31)

which, according to Equation (8.30), can be expanded to

f=Tr[(Y - XB)' (Y - XB)]. (8.32)
Factoring the product leads to four components as below;

f=Tr[Y'Y - YXB - BX'Y + B'’X'XB].

But since Equation (8.5) notes that the trace of a sum is equivalent to the sum of the traces, we can
now say

f=Tr(Y'Y) - Tr(Y'XB) - Tr(B'X'Y) + Tr(B'X'XB).

More simplification is possible. From Equation (8.4) we note that Tr(B'X'Y) = Tr(Y'XB) and
from Equation (8.7) we note that Tr(Y'XB) is equivalent to Tr(BY'X). We can now rewrite f as

f=Tr(Y'Y) - 2Tr(BY'X) + Tr(B'X'XB).

In order to make f as small as possible, it is necessary to find the 0f/0B. Using Equations (8.10) as
well as (8.12), we have

% = 2X'Y +[X'X +(X'X)']B.

But since X'X is symmetric, we can simplify a bit more and have

o XY +2X'XB. (8.33)
oB

After setting Equation (8.33) equal to zero, this now leads us to the multivariate analog of the
normal equations [Equation (5.7)] as below:

X'XB=X'Y (8.34)
so that

B = (X'X)X'Y (8.35)

The Multivariate General Linear Model 93



Each column of B has the same formula as the univariate model, 1. e.

B, =(XX)"XYy,.

8.12 Properties of the Error Matrix &

In order to talk about the distribution of the error matrix €, we will have to rearrange it somewhat
using the Vec(-) function of Section 8.7. We will assume, in a multivariate analog to the Gauss
Markov Assumption of Chapter 5, that the distribution of the n by p matrix € is

Vec(€) ~ N(,, 0,, .1, ® X). (8.36)

The Vec operator has unpacked the € matrix, one row at a time, in other words, one consumer's
data at a time. Since there are n consumers with p measurements each, the mean vector of Vec(g)
is np by 1. The covariance matrix for Vec(g), since the latter has np elements, must be np by np.
This covariance matrix has a particular structure that logically, and visually, is reminiscent of the
structure we assume in the univariate case presented in Equation (5.16), that of sl=I-5. Here,
instead we have the partitioned matrix

2010
——f—— e — =t
0 x|
D R e (8.37)
A Rl R
010! IX

with each £ and each null matrix 0 being p - p. The X in the ith diagonal partition represents the
(homogeneous) variance matrix for observation i. The 0 in the i, jth position implies that rows i
and j of €, corresponding to subjects i and j, are independent.

8.13 Properties of the B Matrix

It is now timely to contemplate the expectation and variance of our estimator of Equation (8.35).
Before proceeding, if you wish you can review some of the rules of expectations and variance
presented in Section 4.1. The expectation will be straightforward, as

E(B) = E[(X'X) "' X'Y]
which for fixed X and Equation (4.5) leads to
E(B) = (X'X) ' X'E(Y) = (X'X) ' X'XB = B.

In order to derive the V(ﬁ), we will need Theorem (4.9) as well as the more recent Theorem
(8.19). OK, let us proceed by noting that

B=(XX)"X'Y = (X'X)'X'VL.
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Now with (X'X)_lX’ playing the role of "A", Y playing the role of "B", and the p by p identity
matrix I playing the role of "C", we apply Theorem (8.19) to show that

Vee(B) = [(X'X) ' X' ® I]Vec(Y)

Now we just need to recall that Var[Vec(Y)] =1 ® X and to apply Theorem (4.9) and take it to the
bank:

Var[Vec(B)] = [(X'X) "' X' @I](I® X)[X(X'X) " ®1]. (8.38)
Note that in the above we have taken advantage of Equation (8.14) to express
[(XX)' X' ®I]"=X(X'X) ®I.
Now applying Equation (8.17) two times to Equation (8.38) we can express it as

Var[Vec(B)] = (X'X) ' ® X. (8.39)

8.14 The Multivariate General Linear Hypothesis

In Chapter 6 we looked at q degree of freedom hypotheses of the form
Hy: AB-¢=0,

where the matrix A had q rows and where 0 is a q by 1 column of zeroes. In this chapter, since the
B matrix has multiple columns of possible interest, as compared to § which is a column vector, we
allow ourselves the possibility to test linear hypotheses about these several columns of B. The
general form of the hypothesis is then

H,: ABM - C = 0. (8.40)

The q rows of A test hypotheses concerning the k independent variables. A is therefore q - k with q
< k. The /columns of M test hypotheses about the p dependent variables. M is necessarily p - /
with /< p. Next, in Section 8.15 we will look at some examples of A and M.

8.15 Some Examples of MGLM Hypotheses

In our first example, we have k = 3 with x, being the usual column of 1's, x, being income, and
then x, being education. On the dependent variable side, we have p = 2 with y, a measure of
attitude towards a particular brand and y, being a likelihood of purchase measure. Imagine for a
moment that we want to find out if education and income, taken jointly, impact the two dependent
variables. Our hypothesis matrices would then take the form as shown below,
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ABM — 01 0 [301 BOZ 1 0
- 0 0 1 Bll BIZ 0 1 .
BIZ BZZ

In the second example, k = 1 and x,,is the usual vector of n 1's. However, p =4 where y,, through
y., are evaluations of four product concepts on a 10 point scale. In this second example, the
question of interest is, "Do the product evaluations differ?" In this case, we will use the
multivariate approach to repeated measures. The current approach is in contrast to the univariate
approach covered in Section 7.7. Here we have

-1 0 0

BM=1-[8, Bo By Bosl| o & O
0 0 -1

1 1 1

Since there are no real independent variables, the matrix B is actually a row vector with only the
intercepts present. In an intercept only model (see Section 5.9), the B, values are simply the
means of the dependent variables. The M hypothesis matrix transforms the four variable means
into three mean-differences. Thus, the hypothesis is of three degress of freedom which test for
equality among the levels of the four original dependent variables.

Our example number 3 includes k = 4 with an intercept term plus three attitude variables. For
dependent variables, we have p = 3 behavioral measures. Our hypothesis will be an omnibus
question designed to ask whether attitude influences behavior:

010 0 BOI BOZ B03
ABM=/0 0 1 0 Bll BIZ B13 I.

00 0 1 [321 B22 BZ3

B31 [332 B33

Finally, in our fourth example, we have experimental data in which we had a 2 x 2 ANOVA with
four groups of consumers. Half the groups saw a high price, and half a low price. Half the groups
saw the presence of advertising with half seeing no advertising. There is also the potential
interaction of these two factors. Two measures were y.;; an affective response and y.,; a cognitive
response. The hypothesis concerns the one degree of freedom interaction between price and
advertising. Does such an interaction occur for affect and cognition?

BOI BOZ

ABM=[0 0 0 1] P P {1 0}.
BZ] B22 O 1
B31 B32

8.16 Hypothesis and Error Sums of Squares and Cross-Products
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In the univariate linear model, we calculate the hypothesis sum of squares, which is a scalar that
corresponds to the single dependent variable. The following equation produces the sum of squares
and cross products matrix for the hypothesis embodied in Equation (8.40). As such, it is the
multivariate analog to the univariate version presented in Equation (6.17):

H=(ABM-C)[AX'X)'A']'(ABM -C). (8.41)

The result is /by /with /being the number of columns of M and C, or in other words, the number
of transformed dependent variables in the hypothesis in Equation (8.40). The error sums of
squares and cross-products for the hypothesis, in contrast to the single sum of squares for the
univariate version in Equation (5.22), is also an /- /matrix:

E=M [Y'Y-Y'XXX) X' Y]M. (8.42)

Again in the univariate case, in Equation (6.18) we formed an F-ratio using the sum of squares for
the hypothesis, and the sum of squares for the error. Modifying the form of Equation (6.18)
somewhat, we can express the calculated F as

SS,/q  h/q —e’1h~n_k
SS;.../n—k e/n-k q

Error

F=

In the multivariate case we will do something similar, but the degrees of freedom are absorbed
into the multivariate tables. But more importantly, since E'Hisan/ 7 matrix, we must decide
how to summarize all of those numbers in a way that allows us to make an all-or-nothing decision
about the hypothesis in Equation (8.40).

Eigenstructure affords an optimal method for summarizing a matrix, and in Section 8.8 we studied

the eigenstructure of asymmetric matrices like E H. We are now ready to test our multivariate
linear hypothesis.

8.17 Statistics for Testing the Multivariate General Linear Hypothesis

If we define s as the rank of E_IH, we then have the eigenvalues A, , A, , -+, A, of the system
(E'H-ADx=0. (8.43)

In general, s = Min(q, 4), that is, whichever is smaller, the number of rows of A or the number of
columns of M. The eigenstructure of H(H + E)_] will be of interest also:

[H(H +E) - 6I]x = 0 (8.44)
with

X
0 =i 8.45
B R (8.45)

so that
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hy = ——. (8.46)

In a logical sense, the A, are analogous to F ratios, being the eigenvalues of E-IH, while the 0, are

. . . . -1
more analogous to squared multiple correlations, being the eigenvalues of H(H + E ). Now there
are four different ways to test the multivariate hypothesis, proposed by four different statisticians.
In addition, there is an F approximation that is somewhat commonly used as well. The four are:

Hotelling-Lawley Trace Tr(E'H) = Zki (8.47)
1 7\‘1
Roy's Largest Root 0, = (8.48)
1+,

N s SO
Pillai's Trace THHH+E)']=) 6. = i 8.49
[HH+E)"] Z , ZH y (8.49)

- |H| ¥ 1

Wilk's Lambda A= = 8.50
|H+E| H1+}\.i (8:50)

An especially good set of tables for these statistics can be found in Timm (1975).

The F approximation is based on Wilk's determinantal criterion in Equation (8.50). That formula
is

Fleer—— — = (8.51)

where, as before, q is the number of rows or the rank of A, 7is the number of columns or the rank
of M, but there are some other parameters. The values

Ja —
T 2,
4
ren_k_fza+l
2 b
2.
/zjq—245 if/2+q2—5>0
q -
t:
1 if/*+q*-5<0

and n is the sample size while k is the number of columns of X. The degress of freedom for F' are
/- q in the numerator and rt - 2u in the denominator. The approximation is exact if s = Min(/, q) <
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2, which is to say that the rank of E 'H is 2 or less. You will note the eigenstructure discussed in
Chapter 3 is a special case of the following discussion with E = L.

Earlier, in Section 8.4, we spoke of correcting a statistical test for having a large number of tests
and also for post hoc data snooping. If we consider the hypothesis

Hy: a’Bm =0

where we try to pick the elements in the vectors a and m to make the significance test as large as

possible, then 0 from Equation (8.3) is Roy's largest root. Unlike the Dunn-Bonferroni

max
approach, the Union-Intersection approach controls for a high number of tests and also takes into
account the correlations between the dependent variables. Another example would be where we
try to maximize the correlation between a linear combination of x variables and a linear
combination of the y variables. This is called canonical correlation.

8.18 Canonical Correlation

In the multivariate general linear model, since there are p elements to the y vector and the k
variables in the x vector, we face an embarrassment of riches in trying to summarize the
relationship between the two sets of variables. Shown below, we see the partitioned matrix of all
the variables, partitioned into y and x sets:

The p - k matrix R certainly has information in it about the relationship between the two sets of
variables, containing as it does, the correlations between the sets. But in order to summarize the
relationship between the two sets, we want a scalar. One obvious approach is to create new two
new scores, one from the x set and one from the y set such that the correlation between the two
scores is as high as possible. In essence, the problem is to pick the p elements of ¢’ in

u=c'z, (8.52)
and the k elements of d’ in
v=d'z, (8.53)
such that
cR_d)’
: (R, D) (8.54)

" CRc-d'R d
is maximized. This leads to two different eigenvector problems,
[R,R R R —p’llc=0 (8.55)

and
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[RyR R, R, —p’l]d=0. (8.56)

We can pick the smaller problem to solve and then deduce the other eigenvector using either

1
d=—R_ R ¢ (8.57)
P
or
|
c=—RR d (8.58)
P

The canonical correlation can be thought of as a linear hypothesis of the form of Equation (8.40)
with

10 0
0 0 1 - 0 ,
kAk*: e DY DY e e :[kOI I k*Ik*]

0 0 0 1

and M = 1. The number of canonical correlations and eigenvector combinations depends on s,
which in this case is simply whichever is smaller, k or p. The first canonical correlation squared
corresponds to Roy's Largest Root in Equation (8.48), which can be used to test the hypothesis
that the canonical correlation is zero. One can also use Pillai's Trace [Equation (8.49)] to test
whether all of the canonical correlations are zero, 1. €.

Hotpy =p3 =-+-=p; =0.

Placing each of the eigenvectors, a,, a, , -, a into columns of the matrix A (not the hypothesis
matrix), we have rows of A that correspond to y variables and columns of A that correspond to
different canonical variables from Equation (8.52). We can standardize the elements of A using

C,=C(CRO)"
and for the x set we have

-172
D,=DMD'R.D) .

It is also instructive to look at the correlations between each of the canonical variables in Equation
(8.53) and the variables of the x set, and the canonical variables in Equation (8.52) and the
variables of the y set. We have for each combination

Cov(u,z,)=CR,,
Cov(v,z,)=DR_,

Cov(u,z,) = C/R,,,
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Cov(v,z,)=DR
8.19 MANOVA

We will begin with an example with a purely between subjects design, and two different
dependent variables. Imagine that we have four groups of subjects, each group having seen a
different advertisement. Thus, k =4 with x, being the usual vector of constants and x,, X, and X,
coding for group membership. To keep things simple, lets say that y,, contains the respondent's
answer to the question, "How much do you like the product?" while y, has data on "Intention to
buy." In summary, Yisn-2,Xisn-4and Bis4 -2 with

Y = XB.

It would be natural to test the hypothesis of no group differences for the two dependent variables.
This hypothesis is much the same as canonical correlation, its just that the emphasis is slightly
different. We calculate the hypothesis sum of squares and cross product matrix

H = (ABM -C)'[A(X'X) "' A’ (ABM - C),

with

>

Il
c o o
c o -
)
- o o

and M =1, and the error sum of squares and cross products matrix,
E=M [Y'Y - YX(X'X) X' Y] M,

invert this latter matrix in order to find the eigenvalues of E H, calculate the four criteria and the
F approximation, and see to the fate of Hy. In addition, the eigenvectors for the y set,

v=dy,

can tell us the optimal combination of y's for detecting group differences. Similarly, the
eigenvectors for the x set reveal the best possible contrast among the group means.

8.20 MANOVA and Repeated Measures

To start off this section, we will pick an example with no grouping variables, just one group of
consumers who rate a product using the same scale under p = 3 different scenarios. The
multivariate model is then
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Y =XB

Yo Yo o 91p 1
921 5’22 g’z 1
p = [BOI Boz [303]-
Slnl Slnz g’np 1

To test the hypothesis that all scenarios lead to equal ratings, we use

H,: ABM =C
1 1

Ho: 1-[Boy Bo Besl|—-1 0]=[0 0].
0 -1

We can conceptualize the process here a little bit differently. For each subject, you could
transform the scores prior to the analysis by applying the M hypothesis matrix directly to the Y
matrix. In that case, you could simply test whether the 3, values of the transformed measures
were zero. So if we define

Y =XB
where M is exactly as before, and now we test to see if
~ o~ 10
Ho:o 1-[By; Boa ] =[0 0]
0 1
where the parameters EO, and Eoz would be estimated from Y instead of Y. Both approaches are
equivalent because the hypotheses
Hy py =py, =0 (8.59)

and
Hi y, =hy, =ny (8.60)

are equivalent. Using the transformed dependent variable matrix Y and testing the Hypothesis of
2
Equation (8.59) is an example of Hotelling's T (pronounced Tao Squared), which is the

multivariate analog of the household variety t-statistic. The T is used to test hypotheses of the
form

Ho:p,=¢
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. . . . . 2

with u, being the vector of population means for the dependent variables. Hotelling's T can also
be used to test multivariable mean differences across two groups, just as the t does where there is
but one dependent variable.

Now we put together an example where there are different groups of subjects as well as repeated
measurements. As before, we assume that all subjects rate a product under p = 3 different
scenarios. But now there are actually four different treatment groups, each group having seen a
different advertisement for the product. In that case, k = 4 so that the B matrix is 4 by 3. Each
column of B corresponds to one of the three rating scenarios. The first row of B contains the
intercept terms, while the next three rows pertain to group differences.

Is there an impact of advertisement? In the univariate approach, we add up the three measures to
create for each subjecti, y =y, +y, +y,. We test the hypothesis using

H: AB=c
0100 EO 0
Hy: |0 0 1 0 El =0
0 0 01 Ez 0

Bs

which is covered in Chapter 7. In the multivariate approach covered in this chapter, we do not
transform the dependent variables, we leave them as they are. We have

H,: ABM=C

0100201?2[[3;3 0 0 0

Hy: |0 0 1 0 13“ B” '3131:000

00 o0 1) ™ " 000
B}l [332 B33

This approach confounds the main effect of group with the simple main effect of advertisement on
y,,ony,and ony, In other words, from column 1 of Y we look to see what effect there is of
group membership, we do the same thing with columns 2 and 3. But this claims some of the
variance that would ordinarily be considered part of the advertisement x scenario interaction. The
main effect of advertisement would generally look only at a summary of the group differences
holding the scenario constant.

Is there an effect of scenario? Here we start with the univariate approach. If we define

1 1
M=|-1 0
0 -1
and assume that
M'IM =1
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as we did in Equation (7.12), we can utilize the univariate approach to repeated measures and use
the F-test discussed in Section 7.7 with an error term of subjects x scenario interaction. In the
univariate approach all scores are placed in a single column vector. In contrast, in the multivariate
case each scenario constitutes a different column of Y and we test

H, ABM =C
BOI BOZ BO} 1 1
He: 1 0 0 0] P P By =[o o]
BZI BZZ BZ} 0 _1
B}l B32 B33

There also exists an approach in between the univariate and multivariate methods. One could Test
H, M'IM =c’1
and pick the univariate approach if you fail to reject and the multivariate approach if you reject.

Another approach was proposed by Greenhouse and Geisser (1959) who suggested that we could
correct the univariate F to the degree that

M'SM = 6°1. (8.61)
Here in Equation (8.61) we have replaced X with it's estimator, S.

If we wish to test the advertisement x scenario interaction according to the univariate approach,

2 . . .
we would need to assume that M'XM = ¢ 1, place all scores in the vector y, and use the interaction
of subjects x scenario as the error term.

In order to test the advertisement x scenario interaction according to the multivariate model, we
can combine the A matrix from the advertisement main effect and the M matrix from the scenario
main effect. In that case we have

H,: ABM =C

0100E°1E°2[§°31100

HO:0010'3“B”B13 -1 0|=[0 0

00 0 1|/ ™ "1 0 —-1] [0 o0
B31 B32 B33

8.21 Classification

To motivate this section, which will discuss the technique known as the discriminant function, we
begin the discussion with a little two group example. Imagine we are trying to decide who to
include in direct mailing. Our goal is to classify our customers into two groups based on whether
they will, or will not, respond to the mailout. From a sample of our customer base, we have
collected some data which we will get to in just a minute. For now, we note that the cost, or
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disutility, of misclassifying someone in group i, mistakenly placing them in group j is ¢;. Given
our two groups, we might then tabulate the cost matrix as

Classification Decision
Group 1 Group 2
. Group 1 0 Cp,
Reality Group 2 Cy 0

For each individual we have a p element row vector from the matrix Y, y!, containing numeric

variables. The probability density for the individuals in group j is f(y;), while ; is the relative
size of group j, also called the prior probability. The conditional probability an individual with
vector y, comes from group j is

chfj (v:)

D mafu (i)

m

Pr(jly;) =

We want to minimize our expected cost which in the two group case is given by
Pr(ly;.)c,, +Pr(2]y;)cy
and we can decide that individual is in group 1 if

fi(y) e > 6(y) - m, e ¢y

or rearranging we can say that we should decide that the individual is in group 1 if

fiyi)  m G (8.62)
f,(y;) m ¢

If the m; are unknown or assumed to be equal, and ¢,, = ¢,,, then it is only the right hand side of the
above Equation (8.62) and what matters is the relative height of the two densities. The crossover
point of Equation (8.62) would be the place where the densities themselves cross over.

The usual assumption is that an observation vector from group j

Yi~ N(P-j, Zj)

which implies from Equation (4.17) that

fi(y;) = expl-(y, —1,)'E; (v, -, /2]

1
| EJ |1/2 (zn)p/z
Taking Equation (8.62) and taking logs to both sides, we would then place a case in group 1 if

In f(y;) > In T,Cy
f,(y,) TCy
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1. |1Z,] 1 . . T,
—In=2 |y, —p)ENy —n) = (V. —,)E (Y. — )| > In—22L
2™ME 2[(y,. RO)ET(Y ) -y ) ES (Y uz)] -~

If we assume that X, =X, = X the above expression simplifies to

vz, —uz)]—%[ml F)E (y — ) > In 282 (8.63)

TCyy

To get to this point it helps to realize that (a - b)’'C(a - b) = a’Ca - 2a’Cb + b'Cb and that (a +

b)'C(a - b) =a’Ca - b'Cb. Noting also that ln% = —lnR, if we substract In222L from both sides
a TiC1o
of the above equation we get
r 5 - 1 I — m,C
s (8.64)
1¥12

Define the left hand side of this last equation as v,,. Our decision to place a case in group 1 is
made if
v, > 0.

For population 1 we have

Vi, ~ N[lnnl—cn+A212, AZIZJ

T,Cy
where

Ay = (1~ 1) (1 )
which is known as the Mahalanobis distance between the mean vectors of the two populations.

Knowing the distribution of v,, allows us to estimate the probability and the total costs of
misclassification. We also define the raw discriminant function as

v=dy,
where
d=5"(n - ).
We can also standardize the function using
v, =Apdy, =dly;

Back to the decision,
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n.C o 1 g
1n£+[yiz 1("1 —Hz)]_z[(lh +py)'E 1(111 _"2)]> 0

T Cpy

221

In 2252 4 yid —l(u1 +p,)'d>0.
i€z 2

Rearranging, our decision "1" is taken if

v=yid> l(ul +py)d-In 252
2 T Cpy

or in the standardized version

1
Vs = yldq >_(ll1 +u2)’ds _A7112 lnTEZ_CZI
2 e

The discriminant function maximizes the separation between the values v, and v,, the means for

the two groups on the discriminant scores. When we don’t know the p, or Z, we split our samples
into validation and holdout samples.

8.22 Multiple Group Discriminant Function

The problem can be approached as a special case of MANOVA. For example, assuming that we
have k = 4 groups with p discriminating dependent variables, and the general linear hypothesis

H,: ABM =0,
we would use the hypothesis matrix
01 00
A=|0 0 1 0
0 0 0 1

with M = 1. Just as we did before in Equations (8.41) and (8.42), we would calculate the
hypothesis and error sum of squares matrices H and E. In order to find a score, v=d'y,, with v
have as large a between groups sum of squares as possible, we will utilize the eigenstructure of
E'H as before. We pick values in the vector d such that our F test for group differences on v is
as large as possible. In other words, we maximize the between groups sum of squares for v

’

divided by it's within groups sum of squares, that is to say

r

: , over all possible values of a. It

is customary to scale a such that the within-group variance (mean square) is

m:d'Sdzl.
n—-k
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Chapter 9: Confirmatory Factor Analysis
Prerequisites: Chapter 5, Sections 3.9, 3.10, 4.3

9.1 The Confirmatory Factor Analysis Model

The difference between the models discussed in this section, and the regression model introduced
in Chapter 5 is in the nature of the independent variables, and the fact that we have multiple
dependent variables. The independent variables are unobserved constructs, also known as factors,
dimensions or latent variables. At this point the student might ask, how scientific is it to speak of
unobserved variables in a model? We will soon see that if the model of unobserved independent
variables is correct, it makes a strong prediction about the structure of the covariances among the
observed dependent variables. For this reason, these models are a special case of models known
as covariance structure models.

Given that we are dealing with unobserved variables, it will be useful to shift our notation
somewhat. In regression, we look at a particular variable as a column vector that displays the
individual observations which comprise the rows. In factor analysis, the individual observations
cannot be fully observed since the right hand side variables, the factors, are not observed. Instead,
we will propagate our model using a typical observation, call it observation i, but leaving off the
subscript i. What’s more, instead of arranging our matrices such that the each column is a
different variable and each row is a different observation, we will be looking at the transpose.

Of course, this is in contrast to the notation employed in Chapters 5 through 8. In that later
chapter, we study the model

Y=XB+e
where the columns of Y (and the parameter vector B as well as the error matrix €) represent the p
different dependent variables. If we were to take the transpose of both sides of that model we
would have
Y'=B'X'+¢.

You will note that, since the product of a transpose is the transpose of the product in reverse order
[Equation (1.34)], B and X are now reversed. Also, the data matrices Y' and X' now have a row
for each variable, instead of a column as before. Next, as described above, rather than look at
every subject, we look at a typical observation, for example, number i:

y,. =B'x, +€,.

The dot, which is a subscript reduction operator, is mentioned in Section 1.1. One final change is
convenient. If we totally drop the subscripts from vy, , x, and €, , we would just have

y=B'x+e.

This is how we will describe the model in this chapter. We will call the regression weights A's
instead of B's and the independent variables will be n's instead of x's.

We start out with a scalar representation of the situation:
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Yi 27\11‘11 +}‘12n2 + "'+7"1mr|m +€,
Yo =k +Ayun, +o Ay, N, €,

(9.1)

yp :xplnl +7\‘p2n2 + “.+7\’pmnm +8p

The left hand side shows p different variables. Perhaps y, through y, represent three measures of
consumer “greenness”, that is, a tendency to buy environmental friendly products. Perhaps y,
through y, represent three different measures of innovativeness. In any case, the point is that the
y’s are p manifest or observed variables. As has been mentioned, we are representing the data
from a typical subject, the i-th, but the subscript i is left off according to the traditions in this area.
On the right hand side, you have regression coefficients, the ;, which are basically B weights. In
the context of factor analysis, regression weights are called factor loadings. The reason that they
have two subscripts is that you need one subscript to keep track of the dependent variable, or the
equation, and another subscript to keep track of the independent variable. And speaking of which,
these are the n values of which there are m. The n’s are the common factors which explain much
of the behavior of the y’s, at least the part of their behavior that they have in common — the
covariances. Finally, we have the g, which are called unique factors. This is not exactly the same
thing as the error in a regression model. In regression, the error is an error-in-equations, also
called specification error. That is to say, unless a regression model has an R’ of 1, the model is
missing some explanatory independent variables or is otherwise mispecified. In factor analysis,
the &’s are errors-in-variables, or measurement error. The three variables we devised to measure
“greenness”, for example, might not do so perfectly. We generally assume that the part that the
three variables have in common, as quantified by their covariances, must be due to the fact that all
three are at least partially measuring what they are supposed to be measuring. But each one of the
three has some variance that is unique to it. That is what the €; account for.

We can write the model in matrix terms,

vl [ Ae o A | [, g,
Vol R e || o]
Vol (% A o A | M g,
y=An+e. 9.2)

By all rights, in addition to the y vector, the n and € vectors should have a subscript i since they
are random variables, sampled from the population for which this model holds. On the other hand,
A is a constant matrix, holding parameters that describe this population.

So how does this model with unobserved variables make contact with reality? In order to show
how it does so, we need to start with some assumptions and some definitions. We will assume
that E(y) = 0, a p by | null vector. This does not reduce the generality of the model at all, since

covariances are not affected by the addition or subtraction of a constant [see Theorem (4.8)]. In
order to estimate the model, we will make the assumptions that

n~N(,?),

£ ~N(0, ®)
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and that
Cov(g, ) =0.

Like the y vector, n and € are mean-centered. We will also see quite a bit of the coviarance
matrices for n and g, with V(n) = ¥ and V(g) = ©. At this point, we are ready to see what the
covariance matrix of the y’s should look like. We have by the definition of variance in Equation
4.7

V(y) =X =E(yy)
=E[(An+e)(An+e)]
=AEM)A'+ AE(mg’) + E(en’) A’ + E(gg),

but of the four components from left to right, pieces two and three vanish since Cov(g, n) =0. We
have made use of Equation (4.5) and (4.6). We can rewrite E(nn’) = ¥, which was defined above
as the covariance matrix of the n's when we were talking about assumptions. In piece four we
have E(ge’) = ® which was also defined above as the variance of the unique factors. Putting all of
these conclusions together, we end up with the fact that the variance of'y is

V(y)=APA' + @ . (9.3)

9.2 A Confirmatory Factor Analysis Example

Now is the section of the chapter where we look at an example confirmatory factor analysis that is
just complicated enough to be a valid example, but is simple enough to be, well; a silly example.
Lets say we have devised three questionnaire items which measure the consumers’ attitude
towards Beer B, and three other items that measure attitudes towards Beer C. Our six item survey
then contains the variables listed in the table:

Variables Description

\2) Measurement 1 of B
Y, Measurement 2 of B
Ys Measurement 3 of B
\2 Measurement 1 of C
Ys Measurement 2 of C
\Z Measurement 3 of C

To finish describing the model, we will hypothesize that there are two factors, B (1,) and C (n,).
Our model would then look like
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Y, A, O g,
Yy, Ay, O g,
Yol o P O fIm|, |5
P 0 A,|[m £,
Y, 0 A, €
| Y | 0 A, | & |

Again, remember that the y, n and € vectors are random variables, but A is a parameter matrix and
the unknowns in it must be estimated from the sample. To fully estimate the model, we also have
two other parameter matrices,

Vi -
Y= and
LV VY
6, © 0 |
0 6, 0
@ =
| 0 0 Oppj

Note that the ¥ matrix is symmetric, being a covariance matrix and so we do not need to
enumerate the upper triangular part of it. And by the definition of what we mean by a unique
factor, the g, are independent which means that the variance matrix of the ¢, ©, is diagonal. As a
general rule in covariance structure models, we need to specify variances and covariances of right
hand side random variables, and we need to specify regression weights between right hand and left
hand side variables.

Below you can see what we call the Path Diagram for this model:

Vo1
> |y y. <+
;\‘21 @ ;\‘52

> |y har hez b\ <+

v

/|

A path diagram is a very common way of representing a covariance structure model, and there are
a set of conventions that go along with this type of figure. Single-headed arrows represent
directional causal pathways, and two-headed arrows are used to represent covariation. Unique
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factors, and other sorts of error terms, are usually indicated by single-headed arrows without
labels. Circles are used to convey the presence of latent variables, and boxes convey observed
variables.

9.3 Setting a Metric for Latent Variables

The model as it has been presented so far cannot be uniquely identified. To illustrate this, lets
pretend we have a single variable and a single factor. In that case everything boils down to
scalars, and the model is y = An + ¢ and from Equation (9.3), V(y) = kzw + 0. Now define n* =
a'm so that V(in*) = az\p =y*. Also, define A* = A/a. In that case,

y:k*n*+s:&~an+s and also 9.4)
a

2

V(y)=x*2w*+e=7‘—2.a2w+e. 9.5)
a

What this means is that if I have a model with parameters A* and y*, and you have a model with
parameters A and v, both models would fit equally well and there would be no logical way to
decide which was better. In fact, they would be completely equivalent. The source of this
ambiguity lies in the fact that m is unobserved, and it is at most an interval scale. To further
identify the model we must set intervals for it, a process called setting its metric. We can do this
in one of two ways. We can fix one loading per factor to a constant, such as 1.0, or we can fix the
variance of each factor to 1.0. Returning to our two factor example, the first method would yield

1 0
Ay O
A= Ay 0 _ and ‘I’:|:W“ _}
0 1 Va Vo
0 X
| 0 A

while the second approach would give

Ay O

Ay O

Ay O 1 -
A= , and ¥= .

0 A, Yy 1

0 2,

L0 %e

These two methods are equivalent, yielding the same Chi Square values, but the first method is
slightly more general, being applicable in certain situations where the second method cannot be
used. The first method ties the metric of each factor to the first variable that measures it. The
second method turns the factors into z-scores, and the factor covariance matrix ¥ can then be
interpreted as a correlation matrix. For both methods, the ® matrix has p free parameters.
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9.4 Degrees of Freedom for a Confirmatory Factor Analysis Model

Factor analysis does not look directly at raw data. The input data for this technique are the
elements of the sample covariance matrix S, which is a p by p symmetric matrix. Therefore S
contains

p(p2+ 3] 9.6)

“data points”, those being the p variances and the p(p-1)/2 unique covariances. For our 6 variable
example, this would total 21. In our model, assuming we use the first method to fix the metric of
the two factors, we have

4N’s
3y’s
60’s

13 parameters

The degrees of freedom for the model are equal to the number of data points minus the number of
unique free parameters that are estimated from those data. In our case, we have 21 — 13 = §
degrees of freedom. We will be able to reject the model (or not as the case may be) using a x2 test
with 8 degrees of freedom. In terms of hypotheses, we will be testing

Hp: Z=A¥YA' +© (9.7)
against the general alternative
Hp:Z2=S. (9.8)

In some ways this pair of hypotheses is very similar to hypotheses that we saw in Chapter 6 with
regression. However, here we have a different sort of emotional attachment to the hypotheses. In
regression, which encompasses everything from the basic t-test through more complex
possibilities, we are generally motivated to “hope for” Ha and hope against Hy. Here, our model is
Ho, so in an emotional sense, the roles of the Type I and II errors are reversed. The truth is that the
current situation is actually more natural, if we can use that word. In regression, the hypothesis we
are testing is a sort of “straw man” that no one believes in anyway, and that we set up just to
knock down. We will talk more about the “emotional reversal” of Hy, and H, later when we
discuss goodness of fit measures (that is, measures other than the traditional XZ). But first, it is
time to understand how we estimate the parameters of the model and come up with a xz value to
test it. That is the topic of the next two sections. We will be using an estimation philosophy
known as Maximum Likelihood. In order to explore this topic, we will be returning to the much
simpler regression model. Then we will venture forth and look at estimation for confirmatory
factor analysis models.

9.5 Maximum Likelihood Estimators for Factor Analysis

Maximum likelihood is discussed in general in Section 3.10 and within the context of the
regression model in Section 5.4. ML for factor analysis begins with the probability of observation
i under the confirmatory factor analysis model. Here we have the multivariate normal distribution
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[see Equation (4.17)] to deal with since we have p variables, not just one as we did with
regression. We have

1 1
Pr(y,)=—————exp| ——y' Xy, 9.9
(y:) Q" 5 p{ Vi y,} 9.9)

for the p variables on observation i. For the whole sample we have

- j— 1 1 o ry -1
/ =1f[Pr(yi)=(2n)np/2 SUE eXp{—EZYiE yi}. (9.10)

L . . L b
The summation in the exponent of the above equation makes sense if you keep in mind that ¢ e
+b . . .
=c . Now, to get ready for the next equation note that from Equation (1.27) and Section 1.7

n

D yixy =tr[nSE ] (9.11)

1

because

1

Zn:y;Z’lyi = Tr[ZyﬁZlyilz Trzn:yiy;):.’l =Tr[nSZ'].

This is so since a scalar is equal to its trace, and the trace of a product is invariant to the sequence
of that product assuming conformability. We now take the log of the likelihood in Equation (9.10)
but substitute the identity from Equation (9.11) to end up with
1 1 1 4
Int, =L, =——npIn2rn)——nln|Z|-—n tr (SX7)
2 2 2
(9.12)

= constant — % n[ln [Z|+tr(SZ” )].

1 . . . .
The term "constant" above represents —Enp In(2w) which doesn't impact the optimal solution

one way or the other since it does not depend on the parameters and so will not figure into the
derivative. Now suppose | look at the likelihood under Hy: £ = S.  We will call that log
likelihood L, and we find that

L, = constant -%n[ln [S] +p]. (9.13)

Now we have two log likelihoods, one; L, which reflects the confirmatory factor analysis model,
and another that gives us the log likelihood under the general alternative that £ exhibits no
particular structure, which is to say it is arbitrary. In other words, it is what it is.

It turns out that under very general conditions,
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/O 2

2| =2[L,-L,] ~x*(m), (9.14)
A

where m represents the difference in the number of parameters estimated under the two models;

the null (0) and the alternative (A). As we have already described, the alternative model estimates

@ parameters while the number of parameters in the null model depends on the specific
theory as expressed in the matrices A, ¥ and ®. Plugging Equations (9.12) and (9.13) into
Equation (9.14), the xz value is then

42 =n[in =]~ In|S| +tr(SE ) — p]. (9.15)

As can be seen, as X — S, f(z — 0. Thus the closer the match between X and S, the smaller the

value of xz. But it is also true that as n — oo, 3> — o, and conversely, as n — 0,3 — 0. This

means that all things being equal, it becomes easier to reject H, the larger the sample size, and it
becomes harder to reject Hy the smaller the sample size. This is how all efficient statistics
function, but since we have an emotional attachment to Hy instead of H,, this would seem to have
certain consequences both for individual researchers, and for the development of marketing as a
whole.

It is necessary that we pick values for the unknowns in the matrices A, ¥ and @ at the minimum
value of Equation (9.15). Equation (9.15) is obviously nonlinear in the unknowns so this will
entail nonlinear optimization as discussed in Section 3.9. For now we note that any computer
algorithm that finds the minimum of Equation (9.15) will utilize the derivatives of that function to
determine "which way is down". Any such algorithm, however, requires rational starting values to
avoid ending up in a local, rather than the global, minimum of the function. As such, you should
do the best job that you can by manually inserting starting values into whatever program you use
to estimate the confirmatory factor model. Certainly, under any circumstances, you should be
able to get the sign right for any loadings in the matrix A. Diagonal elements of ® could be
seeded with small positive values. Diagonal elements of W are likely to resemble the variances of
the measures, while off-diagonal elements could be smaller than the diagonal, and of appropriate
sign. Of course, it is also important that any fixed elements in the matrices A, ¥ and ® have
appropriate starting values, as these will also end up as the final values!

9.6 Special Case: The One Factor Model

Consider a confirmatory factor model with one factor:

Yy A €
Y2 A, €
Yol M) L&p

If we fix V(n) = y,, = 1, the expression for the covariance matrix is simply

T=A+O (9.16)
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and our measures y, , y, , ..., y, are called congeneric tests. In this context the single 1 is called a
true score. As you might guess, this terminology comes from the field of educational and
psychological measurement. If we further specialize the model so that all lambdas are equal, i. e.

we have the model of requivalent tests. Congeneric tests have p A’s and p 0’s, but t-equivalent
tests have only one A and p 0’s. Finally, the model of parallel tests includes the additional
restriction that

Congeneric tests involve 2p free parameters to be estimated from the sample covariances, t-
equivalent tests have p + 1 parameters, and parallel tests have only 2 unknown parameters. Thus
the model of parallel tests makes a very strong prediction about the structure of the covariance
matrix using only 2 parameters. Having only 2 parameters means that the model has a larger
number of degrees of freedom than t-equivalence and especially congeneric tests. The degrees of
freedom of the model represent restrictions that must be met in the covariance matrix. As such,
parallel tests places many more restrictions on the covariance matrix which is shown below:

[ ] (6 0 - 0]

A 0 6 - 0
r=| v A o A]+

K3 [0 0 0

9.7 The Multi-Trait Multi-Method Model

We sometimes have an opportunity to measure a set of traits using a common set of methods. For
example we might measure the consumer’s attitude towards a set of products repeating the same
items to measure each product. With three traits (products) and three methods (items) we would
have a path diagram as below. Note that to simplify an already complicated diagram, the unique
factors were left off, as were the labels on the arrows.
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BPRA

Y Y21 Y31 Yi2 Y22 Y32 Yi3 Y23 Y33

)
B:o:0 0l
A

and then the model would appear as

_Y11_ _7“11 0 0 A, O 0 _glﬂ

Y Ay O 0 0 Ay O _ _ €71
m

Y3 Ay O 0 0 0 Ay €3
up

Y 0 Xp 0 2y O 0 €
UE

Y| =] 0 A5 O 0 25 O i€y |,
N4

Y3 0 Xy O 0 0 Ay €3
Ns

Yi3 0 0 Xy Ay O 0 €13
| Me

Yas 0 0 Ay 0 Ay O €3

REEN L 0 0 Ay O 0 Ay _833J

where 1y, N, and n; are trait factors and 1, n5 and n, are method factors. To finish specifying the
model, we note that V(g) = Diag(8,, 0,, - 0,,), meaning that the nine unique elements of @ are
arrayed on it’s diagonal, and that

" _
o, 1 -
oy Oy 1
Vi =¥= 0 0 1
0 0 0B, I
| 0 0 0 By By 1)
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a —_—
0 B
The three by three section of zeroes in ¥ is null because trait and method factors are assumed

independent, an assumption that we would be testing when we look at the Xz for the model. Note
that we have called the correlations among the trait factor a’s and the correlations among the
method factors B’s. This does not change anything of course. This is just a confirmatory factor
analysis model in which certain values in the ¥ matrix are playing slightly different roles from
other values.

9.8 Goodness of Fit, Root Mean Square Error, and Other
Output from the Model

With a large enough sample size, one can statistically reject even fairly good models. Conversely,
with a small sample size it is possible to fail-to-reject models that are patently incorrect. Given
that state of affairs, Bentler and Bonet (1980) proposed that in addition to comparing Hy vs Ha,
that we introduce a truly null hypothesis. I will call this latest hypothesis Hg for “straw man”
hypothesis. Specifically we have

HA: =S
Hp:Z = APA'+ @
Hg: 2 = ¥ (with ¥ diagonal)

For the straw man hypothesis, Hg, we have further restricted Hy such that A=1, ® = 0, and ¥ is
diagonal. We have three hypotheses. For hypothesis j, with degrees of freedom df;, we define

22

Q; :d_fj
and then we define
Qs -Q
P =" " 9.17)
Qs -1
as one possible measure and
~2 52
A, =t ke (9.18)
Xs

as another measure of goodness of fit. This latter index, Ay, where the subscripts s and 0 highlight
the fact that we are comparing hypotheses s and 0, represents the percent improvement iny > from

hypothesis s to hypothesis 0. The quantity 1 - Ay gives us the remaining improvement that would
be possible for Ha.

Joreskog has proposed an index simply termed GFI that consists of
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. 2
opp otz s 1]
tr(X'S)

and an adjusted version,

AGFI=1-P®*D Gy
2-df

0

We should also mention that there exists a traditional measure of fit for any sort of model, the root
mean square error, or

p__i 5
ZZ(SU _Gij)
RMSE = ||
p(p+1)/2

Note that the double summation operators in the numerator run through each of the unique
elements in the covariance matrix. The RMSE gives you the average error across the elements of

¥ as compared with S.

We can also look at lack of fit for any individual fixed parameter. Of course, any free parameter
estimated from the sample covariance matrix S does not contribute to lack of fit. It is the fixed
parameters, generally the 0’s in A, ¥ and @ that are being tested in Hy and it is these elements that
cause a model to not fit. Given that we are picking free parameters in such a way that the
derivative of Chi Square with respect to those parameters is 0, or assuming all of our free
parameters are in the vector o', we have solved for the free parameters when

~2
N _qo
oo’

because when the derivatives are zero, Chi Square is minimized. But this suggests a way to judge
the fixed parameters. For any fixed parameter, say m, in general

o’
on

#0.

These first derivatives provide a clue as to which parameter can be changed from fixed to free for
the maximal benefit toy . All that remains is that we scale the first derivative with the second
derivative and we have what is called a modification index, or MI:

nf032)
2\ on
Ml=—> 2|

ow’)?
onon

General information on the second order derivative is given in Section 3.3 and its role in ML is
discussed in Section 3.10.
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Chapter 10: Structural Equation Models
Prerequisites: Chapter 9

10.1 The Basic Structural Equation Model

In this chapter we are going to look at models where the theme is cause and effect. Unlike
regression, these models are explicitly formulated as causal models, not just predictive models.
We will also be using a notation that is quite similar to that used in Chapter 9 for Confirmatory
Factor Analysis, which is to say that we will have a column vector, y, containing p dependent
variables. The vector y is understood to represent an arbitrarily chosen observation from the
population, maybe the ith. We will have a similar situation with the vector x that is a q by 1
column vector. In SEM (Structural Equation Model) terms, we say that y contains the endogenous
variables and x contains the exogenous variables. An endogenous variable is one that appears at
least once as the dependent variable in an equation. On the other hand, variables that do not
appear on the left hand side are exogenous, or "given." In other words, all variances of, and
covariances between, exogenous variables are determined outside of the system. They are not at
issue. The variances and covariances of the endogenous variables are being modeled as a function
of the exogenous variables. The basic model looks like

Yi 0 By - Byl||W Yu Y o Yig || X -
Y. Byy O - sz Y2 Yar Y2 0 Yaoq | | X2 €,
= + +
yp Bpl Bp2 O Yp Ypl YpZ ypq Xq C,!p
y=By+Ix+¢. (10.1)

So we have p simultaneous equations. Note that for each of the causal parameters, the y’s and the
[’s, the subscripts follow the same pattern. The first subscript refers to the equation, in other
words the y variable which is the effect. The second subscript refers to the cause.

The p by p B matrix contains the coefficients of the regressions of y variables on other y variables
with 0’s on the diagonal which implies that a variable cannot cause itself. The p by q matrix I"
contains the coefficients of the y’s on the x’s. The error vector, §, is p by 1. These errors are
different than factor analysis errors, they represent errors-in-equations, in the way that these
equations are specified. Thus they are also called specification errors.

In order to get to a point where we can estimate the model, we need to add some assumptions. To
start off innocuously enough, we assume that E(y) = 0 and E(x) = 0, which has absolutely no
impact on the variances or covariances of these variables [see Equation (4.8)]. We then assume
that the x and § vectors are independent,

Cov(x,8) =0 (10.2)

which is to say that the covariances between the x’s and the C’s consist of a q by p rectangular
array of zeroes. We will also need to assume that the determinant

I-B|=0. (10.3)
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Now let us define
V(x)=E(xx)=® and (10.4)

VIO =E@EEH =Y. (10.5)

Note that we have “reused” the ¥ matrix from Chapter 9. In confirmatory factor analysis, ¥ was
used for the factor covariance matrix. In fact, the use of ¥ as the covariance matrix of the C’s is
actually consistent with its Chapter 9 meaning. At this point we are ready to deduce what is
known as reduced form. Reduced form requires that we solve for the y vector, as below:

y=By+I'x+({
y-By=Ix+{
I-B)y=Ix+{

y=I-B)'I'x+(1-B)"'¢
y=Gx+e. . (10.6)

The matrices G = (I — B)-ll" ande= (I - B)_]C are defined merely for convenience, but G does
highlight the fact that we can go from the structural parameters in B and I to the classic regression
parameters with some algebra. Of course, that does not prove we can go in the opposite direction!

What is the variance of the y variables? We can use the reduced form derived above to simplify
our explanation,

T = E(yy') = E[(Gx+e)(Gx +e)']
=E(Gxx'G') + E(Gxe') + E(ex'G") + E(ee') . (10.7)
The 2™ and 3™ terms vanish. To see this, we look at the 2™ component which is given by
E(Gxe') = E {Gx[(l —BY'g)’ }
which, using the fact that the transpose of an inverse is the inverse of the transpose [Equation
-1
(1.40)], and passing the constants in G and (I - B) through the Expectation operator [remember
Equations (4.5) and (4.6)], is equivalent to

E(Gxe)=GE(x{)(I-B)™".

Here we note that E(x{') that appears immediately above is another way to express the Cov(x, §),
and that covariance must be zero by previous assumption. The 3™ term is just the transpose of the
2", What the cancellation of the 2™ and 3" components in equation (10.7) means is that we end
up with the following expression for Z,

E(yy') = GE(xx")G’ + E(ee") (10.8)
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At this point we might pause and note the similarity between this expression and it's equivalent for
factor analysis, Equation (9.3)! Now, to further flesh out this last equation we need to remember

that we had previously defined V(x) = E(xx") = @, and V(§) = E((C") = ¥. Proceeding along those
lines we see that

E(yy)=(I1-B)'T®r'A-B")"' + (I-B) ' ¥(I-B")""

=(I-B)'[T'®or"'+¥Y]I-B)".
How about the covariance between x and y? That would be

E(xy)=E [x (Gx + e)’]
= E[xx'G' +xe']
= E(xx)G' + E(x{')(1-B")"

=®G'+0=0I''I-B")".

The null matrix appears above because we have previously assumed that E(x{') = 0 [in equation
(10.2)], that is to say the x variables are not correlated with the errors in the equations. Putting all
the pieces together,

(10.9)

|
-
— |
e (-
L or'(1-B)™ | CD]
The structure above constitutes Hy and Ha: £ =S is as before in Chapter 9.
10.2 A Simple Example with Four Variables

At this point I would like you to imagine that we have measured the following four variables:

Variable Description
X, Perceived Attractiveness of Product
X, Perceived Cost of Product
M Intention to Purchase
Y, Purchasing Behavior

Now let us look at the path diagram for a causal model.

126 Chapter 10



X1 11 ‘ ‘
Y\A B21

Y
Xz/lzv

There are a few things we might note about this diagram. As is the tradition with confirmatory
factor analysis, we usually leave off a label for errors; they are just represented as single headed
unlabeled arrows. Covariances, such as the one between x, and x,, are represented by two-headed
arrows. Causal paths are represented by one-headed arrows. By tradition, the variances of the

exogenous variables do not appear on path diagrams.

The structural equations for this model are

Yi =YX YpX, +6,
Yy =Buy +8,

b M e

y=By+Ix+¢.

and in matrix terms

In addition we need to specify the variances of any variable appearing on the right hand side:

|:W11 - ]
V) = , and
0 vy,

¢11 ]
=S =.
¢2[ ¢22

V(x) =

Since the x’s are exogenous, their variances and covariances are given, and are estimated by the
sample values. Thus they cannot contribute to the falsification of the model. Counting up all the
free parameters, we have 1 3,2 y’s, 2 y’s and 3 ¢’s. There are (4-5)/2 = 10 data values, leaving 2
degrees of freedom for the model. This can be seen in the path diagram by the fact that there are
two missing arrows; the arrow that does not appear between x, and y,, and the arrow not present
between x, and y,. It is actually these two missing arrows that are being tested by the Chi Square

statistic for this model. Their absence is what we can falsify using the SEM technique.

10.3 All y Models

Any model that can be expressed with x and y variables can be expressed with y variables alone.

Consider the following two sets of equations,
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y=By+Ix+{
x=0y+Ix+0,

where the second set of equations, involving the x variables, is present just to create a similarity
between the x’s and y’s. In fact, the second set really just sets x = x! Now define

Yy
Z=|-|
X
B I
G-= and
U
¢
e:
|10

so that we can rewrite the two sets of structural equations

z=Gz+e with

g —
V(e) = =A.
0 @

We define z, G and A temporarily just to illustrate the point. The point being that we need only
one set of variables with one regression coefficient matrix and one variance matrix. It is most

convenient to use y, B and ¥ to play these roles.

10.4 In What Sense Are These Causal Models?

Using Structural Equation models we have the potential to reject the hypothesis Hy that embodies
the causal model. Rejecting Hy is a definitive event. If Hy is not rejected, the results are a bit more
ambiguous. All we can say in that case is that we have failed to reject the hypothesis. In other
words, it is still in contention but by no means can it be considered proven. In point of fact, there
are an infinite number of other possible models that could also be true. Hj is merely among the
survivors. To illustrate this point, consider the two causal structures below:

Y2 |4

, /v
\s

y; | €

and
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¥ ¥

Yo /— > | Y1 > V¥

Note that the path diagrams above have been simplified somewhat from the traditional
conventions. Both models have one degree of freedom that corresponds to the missing path
between y, and y;. In point of fact, the one degree of freedom, or the restriction implied by that
degree of freedom, is identical in both cases. To explore the nature of this restriction, we revisit
Section 5.8. Consider the regressions

Y, =y, teand
3=y tes

Both causal diagrams require only that the partial covariance c,,, = 0 where G,,, is the Cov(e,, e,)
from the above two regression equations. Failure to reject does not prove your model.

10.5 Regression As a Structural Equation Model

Consider a regression model with three independent variables and one dependent variable. The
path diagram for this appears below;

X Y11
A
21 \
Y Y12 ‘
1
- o "

32
v y
X3

Now let us count up degrees of freedom for the model. We have six elements in the @ matrix
(remember that the variances of the exogenous variables do not appear on a path diagram), there
are three y values, and one y. Among the four observed variables there are4(5)/2= 10

covariances and variances. Thus there are exactly as many free parameters as there are data
points. In effect, the parameters are just transformations of the data. We say in this case that the
model is just identified. The model does not impose any restrictions on the £ matrix, which is to
say that it has 0 degrees of freedom. Now lets look at the multivariate case with multiple
dependent variables. For example, below we can see a model with two y variables and three x

variables:
X \Yu\A ‘
A Y21
Y1
b1 Y Y2
d31 Xs Vi2
A V» ‘
32
\ 4 Y13 Y2
Y23
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We leave it to the reader to calculate the degrees of freedom in this case and to verify that here
too, we will end up with a just identified structural equation model. Regression, whether it is with
one or more dependent variables, is not falsifiable in the sense of structural equation modeling.
Regression is not a causal model.

10.6 Recursive and Nonrecursive Models

At this point we need to learn an important term that unfortunately sounds as if it means the
opposite of what it actually means. A recursive system is characterized by V() = ¥ diagonal, and
by the fact that it is possible to arrange the y variables so that B is lower (or upper) triangular. It is
probably easier to illustrate the concept of a recursivity by referring to its opposite. Some example
systems that are non-recursive are shown below.

X +—m——p

tv

X2 ——p

and

' t

X2 b—p» | 2

Both of these would be called non-recursive. Generally, non-recursive models can be very
difficult to estimate using structural equation models. There are certain specialized econometric
techniques, discussed in Chapter 17, specially constructed to facilitate these sorts of models.

10.7 Structural Equation Models with Latent Variables

It is possible to combine the latent variables models of Chapter 9 with the structural equation
models of this chapter. In other words, we can have path models between factors. While we have
already shown we can always get by with just y-variables, here, if only for notational clarity, we
will assume we have two sets of variables, an x set and a y set, and therefore we need two
measurement models,

y=Am-+e (10.10)
x=A&+9. (10.11)
The y-variables are a function of certain latent variables, the n’s, while the x-variables are a

function of other latent variables, the &’s. The next step would be that we can have structural
equation models amongst these latent variables as below:
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n=Bn+TE+C . (10.12)

Needless to say, there are a set of assumptions that we must make before we can use these models.
These are listed now

Cov (m,8)=0 (10.13)
Cov (&, 8) =0 (10.14)
Cov (§,8) =0 (10.15)
Cov (,8,8)=0 (10.16)
Diag (B) =0 (10.17)
|T-B|=0. (10.18)

The first two assumptions in equations (10.13) and (10.14) are that the common factors and the
unique factors are independent. In the structural equation model, the independent variable and the
error must be uncorrelated [assumption (10.15)]. Each of the three types of errors are mutually
uncorrelated [assumption (10.16)] . The diagonal of the B matrix is a set of p zeroes, and the
expression (I — B) must be nonsingular, meaning that its determinant cannot be zero so that it can
be inverted (as is discussed in Section 1.8).

To review, we have now introduced four parameter matrices: A, which contains factor loadings
for y variables, A; which contains loadings for the regression of x variables on their factors, the
&’s, ' containing regression coefficients for  on &, and B with the regression coefficients for n’s
on other n’s. To round out the picture, we have four variance matrices. The variance of all inputs
must be specified, and that includes

V() =, (10.19)
V() =Y, (10.20)
V(e)=©, and (10.21)
V(8) =85 (10.22)

Our first example involves a longitudinal study in which a group of customers is asked the same
two items on four different purchase occasions. These two items are hypothesized to be
unidimensional. Here, we have to admit that this is just an illustrative example since any two
items are unidimensional! You need more than two items to create a scale, otherwise you are just
modeling a plain household variety correlation. But, proceeding anyway, here is the path diagram:
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v v v v

Y1 Y3 ys y7
1 1 1 1
I'4 I'4
B21 Bs2 Bas @
A21 Aa2 A63 Aaa
Y2 Y4 Yo ¥s

bt

Perhaps we are interested in the persistence of the attitude towards the brand over time. All of the
variables have been labeled in such a way as to illustrate an all-y model. The measurement model
is

vy [1 0 0 0] e, |
& Ay O 0 0 €,
¥s 0 1 0 0/|[n] &
Y4 0 A, O 0 ||n, gy
= +
Ys 0 0 1 0 ||n; €s
Y 0 0 Ay O ||ny] €6
Y, 0 0 0 1 €
REN L0 0 0 Ay &g
with the structural model
] 00 0 0f[n] G|
N, By 0 0 Of|m, G,
= +

UK 0 By, 0 0fn; Cs
_n4J L 0 0 P 0_ _Tl4j Cy

To this we add the variance matrices of € and §, respectively,

(6, 0 - 0]

0 6, - 0
0, = and
[0 0 o O]
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0 0 0wy

In the ¥ matrix, the parameter \y, is exogenous.

It is important to be able to calculate the degrees of freedom for this or any other model you are
working on. The raw data for the model, given that there are eight observed variables, is given by
the expression 9(8)/2 = 36. From this we must subtract the four free elements in the loading
matrix, three 3’s, eight elements in ®, and then four elements on the diagonal of W. This leads to
15 degrees of freedom.

10.8 Second Order Factor Analysis

One very beautiful, if rarely applied, model is the second order factor model. In effect, the factors
themselves may form a higher order factor. In other words, if the correlations amongst the factors
have the right structure, these may be the result of a latent variable. A path diagram of this model
appears below:

1 Ya1
Y21 31
A A Ve Ve
1 Aot 1 Aao 1 Ae3 1 Aga
Y1 Y2 Y3 Ya Ys Y6 y7 Y8

Pttt

Note that the 1’s have their own loadings and their own unique factors. Here, the variable &,
serves as the higher order factor. In general terms, the second order factor analysis model can be
written as

y =Am + € and (10.23)
n=Té&+¢, . (10.24)

which the reader will recognize as a special case of a SEM with latent variables. We can write the
model more compactly as

y=A,[re+c]+e . (10.25)
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We need to assume that Cov(e, £) = 0 and Cov(§, {) = 0. Here we also have V(g) = @, V() =¥
and V(§) = ®. The variance matrix of y, X, takes on a particularly aesthetic form with this model,

V(y)=A,[ror+¥A, +0, | (10.26)

with the internal part in the brackets being the V(). Again, students should make certain they can
calculate the degrees of freedom for this model.

10.9 Models with Structured Means

In order to look at means, something that is useful especially when there are multiple groups, we
need to include a unit vector as an “independent variable” and analyze the raw SSCP matrix [see
Equation (2.9)] instead of a covariance matrix. Our model is

y=vwt+tAnte (10.27)
X = wtAE+S (10.28)
n=a+Bn+T&+C. (10.29)
Now define E(§) =«. Then
E(M) =(I-B)(a +TI%), (10.30)
E(x) = v, + A, x and (10.31)
E(y)=v,+A,(I-B)"' (0 +Tx) . (10.32)

In order to fit this model in the context of a SEM, we need to include a vector of 1’s that we will
call x,. It will be the only variable labeled as an x. For the rest of the real x’s and the y’s, we will
utilize an all-y model. For x, we have

1=1£,+0 .

For all of the rest of the variables, we have
€
+ {—} (10.33)

as the measurement model. The structural equation model looks like

n BiIrio[[n]| |a 4

_ ——JI-——JI-—- - - R,
gl=]0100||e|+|e|1+|e-k]|. (10.34)
_ R T - ——

1| otoiol|1] |1 0
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The means of the latent variables, the a,, show up in the position usually occupied by the "T™
matrix, which in this case is a vector. There is a sequence of hypotheses and models that can be
tested. If we assume there are two groups, we would start by testing

Hy: =3, (10.35)

Failure to reject this hypothesis implies that we should pool the groups. At this point any between
group analysis stops.

Hy AD =AY (10.36)
Failure to reject the hypothesis in Equation (10.36) implies each population has the same factor
structure. Otherwise, if you reject this hypothesis, it doesn’t make sense to compare factor means

across groups because these means correspond to different factors in the two groups. Therefore if
we reject the hypothesis of Equation (10.36), between group analysis stops.

Hy v =v? (10.37)

y

Failure to reject the above hypothesis implies that the items work the same way in each
population. If you reject it, between group comparison stops.

OO0 _ e®?
H,:0" =0

There are no consequences of either rejecting or failing to reject the above hypothesis. However,
as always, we should seek to end up with the simplest model possible so failing to reject this one
would be considered positive.

H,:a" =a® (10.38)

This would ordinarily be considered the key hypothesis. Do the groups vary on the factor means?
Finally, we could look at

H,: P =y® (10.39)
which asks whether the groups differ on the factor space.
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Chapter 11: Exploratory Factor Analysis
Prerequisites: Chapter 9, Sections 3.5 - 3.8

11.1 Some Comments on the History of Factor Analysis

In this chapter we are going to cover a set of techniques known as Exploratory Factor Analysis.
Originally, these techniques were simply known as factor analysis, but when Confirmatory Factor
Analysis was invented, the word "Exploratory" was added so as to differentiate the two types of
factor analysis. At this point we will be briefly reviewing the basic factor analysis model. The
derivation of that model is done with more detail in Chapter 9. The difference between
exploratory and confirmatory analyses is partly stylistic. For one thing, in exploratory analysis it
is traditional to use a correlation matrix instead of a covariance matrix. In that case, the model
specifies that

_Zl—‘ _7%1 hip oo 7\‘1m_ _n1 ] _81 ]
Z, Aoy Ay o Ay N, €
= +
_ZPJ _7\'P1 7\'P2 7\'Pm_ _nm _gm_
z=An+c¢. (11.1)

Using Theorem (4.9) we can easily show that

R =E[(An+e)(An+e)]

=AE(MM)A"+ AE(ng’) + E(en’) A"+ E(g€").

Defining E(mn') = V(1) = ¥, E(gg’) = V(¢) = O, and knowing that the unique factor vector € is
independent of the common factors in the vector 1, we can conclude that

R=AYA +0O. (11.2)

Thus the presence of unmeasured variables can be revealed by a particular structure in the
observed correlation matrix. There are a variety of ways of uncovering the structure revealed in
Equation (11.2), many of which were invented long before computers. In general, there are two
steps involved in doing this. In the first step, the factors are extracted, but in an arbitrary way
where the regression weights in A are generally not interpretable. In a second step, the factors are
rotated into an orientation that is more interpretable and hopefully in alignment with theoretical
expectations. This is all in contrast to the confirmatory approach, where we hypothesize a certain
alignment of the loadings from the beginning, and test the proposed model.

One of the earliest ways, and still the most popular method of factor extraction, is called Principal
Factors. We begin our discussion with that technique.

11.2 Principal Factors Factor Extraction
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We will begin with the simplifying assumption that the unobserved factors are z-scores and are
also uncorrelated. In that case ¥ =I and the model of Equation (11.2) simplifies to

R=AA+0O.
The part of the correlation matrix due to the common factors, call it R*, is given by

R*=AA'. (11.3)

The off-diagonal elements of R and R* are identical since © is diagonal. The ® matrix must be
diagonal, being the covariance matrix of the unique factors, and "unique" after all, describes a set
of independent factors. However, R and R* do differ on the diagonal. Whereas R has unities on

the diagonal, R* has the proportion of the variance of each variable that it has in common with the
other variables. This proportion is known as the communality of the variable. A quick look at R*
reveals it to appear as below

2
hi 1, - I,

2
R* = ry hy o1,
2
rpl rpz e hp

withh} being the communality of variable i. The goal of principle factors is to extract factors

from R* in such a way as to explain the maximum amount of variance. Extracting the maximum
amount of variance is also the goal of eigenstructure, as discussed in Section 3.5. Principle
Factors is a technique that uses the eigenstructure of the R* matrix. But before we can proceed,
we have to answer two related questions.

1. What are the values of the h /2
2. How many factors are there?

If we knew how many factors there were, we could extract that many eigenvalues and

eigenvectors from R, reproduceﬁusing the eigenvalues and eigenvectors, then look at the
diagonal of this reproduced correlation matrix. Conversely, if we knew what the communalities

were, we could deduce the number of factors because while the rank (see Section 3.7) of R is P,
the rank of R* depends on m, the number of factors as can be seen in Equation (11.3). R* is an
outer product [Equation (1.21)] with a rank no greater than the number of columns of A.
Therefore the number of non-zero eigenvalues of R* would tells us exactly how many factors there

are. So which comes first: the chicken in the form of the values of theh?, or the egg in the form
of the number of factors?

Even though this is called exploratory factor analysis, we would normally begin with some notion
of m, the number of factors. This notion might come from substantive theory or from an educated
guess. Another traditional method is to pick the number of factors based on the number of
eigenvalues > 1. The logic here is that since an eigenvalue represents the variance of the factor, if
a factor does not explain even as much as a single observed variable, it is not really pulling its
weight.
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Another approach is to use a so-called Scree Chart.

Eigenvalue

Note the Elbow

Eigenvalue Rank

Given the Scree Chart above, we would pick m = 3 and extract 3 eigenvalues. The third one
represents an inflection point, after which there is not much change.

Even if we start with some determined number of factors, it is good to start off with good
estimates of the communalities. Here we take advantage of the fact that the lower bound for the
communality for a particular variable is the squared multiple correlation, Rz, introduced in
Equation (6.21), when that variable is regressed on all the other variables. So we have the
relationship

R? <h? <1 (11.4)

where R Jz is the R? value for variable j, chosen as the dependent variable with all other variables

used as independent variables. A very simple computational formula for this is

Rf:l—i_ (11.5)

¥
where ) is the jth diagonal element of R , the inverse of the correlation matrix of all the variables.

We are now ready to discuss the steps of the algorithm known as Principal Factors. We begin
with the observed correlation matrix, R. According to Equation (11.4), we then can either use the
lower bound to the communality, the Squared Multiple Correlation, or use the upper bound, unity.
In either case, we find the eigenstructure of R*, and then reproduce that matrix using only the m
largest eigenvalues and their corresponding eigenvectors, i. €.

R* = XLX'.

Here the columns of the matrix X contain the eigenvectors while the diagonal elements of L
contain the eigenvalues. Now we need only define

12

A=XL

. 12, . A . . . .
where the square root of a matrix, L. is uniquely identified since L is a diagonal matrix
containing the eigenvalues on the diagonal and zeroes elsewhere. Remembering the definition of
the Diag function [Equation (2.13)] of a square matrix, by subtraction we can deduce that
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© =1 - Diag(R¥).

Sometimes Principal Factors is iterated using the following steps.

Step 0. Find the m largest roots of R. Calculate R = (XL"?)(XL"/?)" = AA'.
Step 1. Set R* =R —[I - diag(R)].

Step 2. Find the m largest roots of R*, recalculateli=(XL”2)(XL”2)’=AA'. If Ris not
changing from iteration to iteration, stop. Otherwise go back to Step 1.

In Step 0 we can start with unities on the diagonal of R and the process will converge down to
the hf, or you start with squared multiple correlations and converge up.

11.3 Exploratory Factor Analysis Is a Special Case of Confirmatory

Before the maximum likelihood approach to factor analysis was invented by Lawley (summarized
in Lawley and Maxwell 1963), factor analysis existed as a purely descriptive technique. Now we
know that exploratory factor analysis is a special case of the confirmatory model discussed in
Chapter 9. To implement the special case, we fix the absolute minimum number of parameters
necessary to identify the model. The absolute minimum number of parameters that must be fixed

o .2 . L
to identify an m-factor model is m . These need to be arranged in the A and W matrices in a

m(m+1)
2

certain way, however. If we set ¥ =1 this fixes parameters leaving

m? _m(m+1) _ 2m’ _m2 +m
2 2 2

(11.6)
_ m(m-1)
2

restrictions. If you have no hypotheses, other than a hypothesis as to the number of factors, m,
these restrictions may be arbitrarily placed in A with column i getting i - 1 zeroes at the top. For

example, with m = 3 factors we have V(1) = ¥ = I which imposes 3(32+ D_ 6 restrictions. We

33-1) - 2 . .
need = 3 more restrictions to make m =9 all together. In that case we can arbitrarily build
Aas
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The 3 tests the null hypothesis that X stems from 3 factors vs. the alternative that X is arbitrary, or

it stems from as many factors as there are variables, p. Once dimensionality has been statistically
determined, rotation may generate hypotheses (for later confirmation) regarding the nature of the
dimensions. If there are more than m” fixed constants rotation is not possible and meaning that the
factor space has been restricted.

11.4 Other Methods of Factor Extraction

In addition to ML factor analysis, we have an approach called MINRES which seeks to minimize

the residual or the difference between the predicted correlations in R and the actual correlations in
R. The objective function is then

f:ii[rjk—ixﬂxklj . (11.7)

m
The reader will note that the component Zx M 18 a scalar version of the inner product of the jth
1

and kth rows of A, since it would be those two rows used to reproduce element r; in Equation
(11.3).

Canonical factoring maximizes the canonical correlation (see Section 8.18) between the factors
and the variables while Image factoring and Alpha factoring are based on the notion that items
measuring any particular factor are sampled from some population of items that might be chosen.
These techniques are discussed in Harman (1976).

11.5 Factor Rotation

After the factors have been extracted, whether this be by ML Factor Analysis, Principal Factors, or
one of the other techniques, it is possible to rotate the factor axes into a position of possible higher
theoretical value. That this is possible can be easily proven by noting that the extraction of factors
based on Equation (11.3) is essentially arbitrary. If I define an orthonormal matrix C such that

CC' =1, I can always create a new loading matrix, call it 1~\, as in

A=AC

so that
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R*=AA'+0©

=ACC'A+0O

which of course yields the original Equation (11.3). An orthonormal matrix like C imposes a rigid
rotation on axes which leaves angles and distances between points unchanged. The geometry of
the situation might look like the figure below which shows two variables defined in a space with
two factors.

N2|
2, =[hy Ayl
21 :[7‘11 7‘12]
A T-f~"""""> ;
<. X
03 |
|
Al m

Looking at the Figure, the length of the vector z; that corresponds to the (predicted) variable j is

7'z, = /ZX W« = 1/hf. Our factors are at right angles, which is to say uncorrelated. At this
k

point, assuming we have extracted those two factors using Principal Factors, the position of the
axes is in the arbitrary orientation of maximal variance. The loadings are now the coordinates of
the variables on the axes formed by the factors. The predicted correlation between the two
variables is

f, =+4/h’/h3 cosO. (11.8)

In the next figure, we complicate things somewhat by having four variables appear.

All variables load on all original axes, n, and m,. However, the loadings or coordinates on the
new axes, 1, and 7, will be different. Two of the variables will load heavily on 7, while the other
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two will load on 7,. The cross loadings will be minimal which creates a much simpler A matrix

in which the interpretation of the n's will be facilitated. In order to rotate the original axes into the
new positions, we will need a bit of trigonometry. Below we have labeled all of the angles
between each original axis and each new one:

.............. e12 A ,Th
............ ,
,
q RS ¢ <
\1’12 'rlz //
AN B //
~ N [ ’/ 6 1
S ey
N P
N A
S 4 e21
~
N ’
A ’
T N /
~ |-
N
A ™
’ ~

We can construct the orthonormal rotation matrix C such that

cos0,, cos0,
C =
cos0, cos0,,

and even though 0, is "reversed", since cos 0 = cos (360 - 0), it comes out the same. Note that the
first subscript refers to the new axis and the second to the old. This concept works in spaces of
arbitrary dimensionality. So how do we pick the angle of rotation? What constitutes a good
orientation of the axes with the variables? What we are looking for is called simple structure.
This is an idea due to Thurstone [summarized in Thurstone (1935)] who came up with three
principles.

1. Each row of A should have at least one zero.

2. Each column of A should have at least m zeroes.

3. For every pair of columns of A there should be at least m variables with zeroes in one column
but not in the other.

The most famous implementation of rotation to simple structure is Kaiser's Varimax procedure
that maximizes the variance of the squared loadings within each column. The original formula,
sometimes still called raw varimax, is to pick the rotation that maximizes the variance of the
squared loadings in each column j of A
2
p
2
2
i 1

D) | = (11.9)
i p p

The formula widely used today (see Harman, 1976, pp. 290-1) weights each factor by the inverse
of its total communality, but conceptually it follows the lines of the above equation. Other
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approaches maximize the variance within each row (Quartimax), or equally between rows and
columns (Equimax).

11.6 Oblique Rotation

Of course nothing guarantees that the factors that we see in marketing will be orthogonal. In order
to create a rotation like the one pictured below,

N2
My
g
‘\‘~~~\ ,/// 6211
—== ’:\ i
’/, uh
we could use a transformation matrix
cos0,, cosO,, cos0,,,
cos0,, cosf, cosB,,
C:
cosO,, cosB, , cosO, .

which would take the old axes into a new set. Note that in this case CC’ # I. The elements of C
are direction cosines, and the sum of cross-products of direction cosines gives the cosine of the
angle between the two vectors which according to Equation (11.8) is the same thing as a
correlation. Thus we have for the correlations between the new factors:

¥ =CC' (11.10)

The new loadings, in 7\, can be inferred from the fact that since
R=AA'+0O
it must also be the case that
R=ACC'A"'+©
so that obviouslyA:XC, which then implies further that C'A =A.  When factors are
orthogonal, and we have standardized both the variables and the factors to be z-scores, the
loadings in the A matrix can also be interpreted as correlations between the variables and the

factors. When we have non-orthogonal factors, this is no longer so. We can, however, calculate
these correlations, known as the factor structure, using
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S=AY. (11.11)

There are a number of analytic techniques available to perform oblique rotation including
Oblimax, Quartimin, Oblimin and Promax.
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Chapter 12: Judgment and Choice
Prerequisites: Chapter 5, Sections 3.9, 3.10, 6.8

12.1 Historical Antecedents

In the 19" century Gustav Fechner attempted to understand how it is that humans perceive their
world. The simplest place to start was by asking how it is that we perceive basic physical
quantities such as the heaviness of a block of wood, the brightness of a light, or the loudness of a
tone. He thought that there were three important elements behind the sequence by which the
process operates:

(1) The external physical environment, which we will denote n
(2) Brain activity, which we will denote m, and
(3) Conscious perception, which we will denote s.

Fechner believed that the relationship between (2) and (3) was inaccessible to science, and that
anyway, they were just two different ways of looking at the same phenomenon. On the other hand,
the relationship between (1) and (2) was part of physics, or perhaps physiology. Here, he
concluded that there was some sort of one-to-one correspondence. He decided that he would
investigate the relationship between (1) and (3), and, some would argue, by doing so created the
science that we call psychology. He was concerned therefore with the way that simple physical
stimuli come to be perceived. He proposed the following law, now known as Fechner’s Law:

s=cln[n/ng (12.1)

where s has been previously defined as the conscious perception of the loudness, brightness, or
heaviness in question; and n the actual physical value of the stimulus. The constant ¢ summarizes
the sensitivity of the sense in question, while n, is the absolute threshold. The absolute threshold
is the lowest limit of perception. For example, if we are talking about sounds, ny would be the
softest sound detectable. The fact that Fechner used a log function is particularly meaningful. We
can relate this to a variety of concepts, such as the economic notion of diminishing returns. The
function predicts that proportional changes are equally important. In other words, if I am holding
a one ounce block and I add 1/10™ of an ounce of additional weight, this creates the same amount
of perceived change as if I had a 1 pound block and I add 1/10™ of a pound. This notion was later
empirically verified by Weber who discovered that the size of a just noticeable difference was
proportion to n,

An =kn (12.2)
where k quantifies the sensitivity of the sense for the observer.

We now continue this historical review with the notion of absolute detection. We will say that the
physical stimulus is measured in units of n, for example seconds, kilograms, centimeters, foot-
candles, and so forth. In the 19™ century it was imagined that there was a threshold, above which
perception of the stimulus began, and below which there was no perception. Assuming we are
dealing with brightness, it was assumed that as n increased, the conscious perception of the light
popped suddenly into existence:
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1.0

Pr(Detect)
S

The position where this occurred was called the absolute threshold. A related experiment might
have subjects compare two lights, and to make a judgment as to which was brighter. Then the
question became one of difference thresholds, that is, a point above which the comparison light
would be perceived of as identical and below which it would be perceived as dimmer, and another
point, above which the comparison would be seen as brighter. The situation is pictured below.

Pr(n Perceived > n,)
1.0

n; ny n3

We would say that the upward JND (Just Noticeable Difference) would be the interval n, — n, and
the downward JND would be n, — n,. Things did not turn out like the graphs pictured above,
however. In fact, empirical data for the probability of detection revealed a much smoother
function. An idealized example is given below:

1.0

Pr(Detect)
S

How can we account for this?
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12.2 A Simple Model for Detecting Something

Here we propose a simple model that says the psychological effect of a stimulus i is

S; :§i +e. (123)

1

where s, is the impact on the sense organ of the observer and e, is random noise, perhaps added by
the nervous system, the senses or by distraction. Let us assume further that, as in Section 4.2,

e; ~ N(O, 02) so that
s, ~N(5,,67). (12.4)

Now, assume that there actually is a fixed threshold so that the subject detects the stimulus if s, >
Sy, 1. €. the threshold is located at s,. More formally we can write that

Pr[Detect stimulus i] = p, = Pr[s;>s,] . (12.5)

At this point we need to establish a zero point for the psychological continuum, s, that we have
created. It would be convenient if we set s, = 0. This psychological continuum is of course no
more than an interval scale, and so its origin is arbitrary. We might as well place the zero point at
a convenient place. In that case, we have

A 17 =2 2
p, = Iexp[— (s,—s,)" /2o ]dsi. (12.6)
V21mo
Now we definez = > In that case dz/ds, = 1/c or dz= ds/c. This will allow us to change
c

the variable of integration, or in simple terms, switch everything to a standardized, z-score
notation. This is shown below:

+00

P, = ! Iexp[—(si -5,)’ /ZGZ]dsi

oo )

1 f -z ;
= exp VA
V2m o7 2

[e2

In words, as we go from the first line above to the last, we change from an "s-score" to a
standardized z-score. In the first and second lines the integration begins at 0, but in the third line
we have standardized so that we have subtracted the mean (from 0) and divided by . One last
little change and we will have a very compact way to represent this probability. Since the normal
distribution is symmetric, the area from +z to +oo is identical to the area between - and —z. In
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. 0-F5; .
terms of the equation above, the area between - and +oo is then the same as that between -oo
c

S, . . o
and —. We can therefore rewrite our detection probability as
o

(12.7)

where ®(-) is the standard normal distribution function [see Equation (4.14)]. A graphical
representation of all of this appears below.

Pr(s;) - &2 —>

Pr(Detection)
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We can now summarize two points; one general and one particular to the detection problem at
hand. In general, we might remember that for any random variable, call it a, for which a ~ N
[E(a), V(a)], then

Prla>0]=® [E(a)/ V(a)] . (12.8)

In this particular case, s, is playing the role of a, withs, being E(a) and G being the V(a). And
why do detection data not look like a step function? According to this model, they should look
like a normal ogive. As the physical stimulus is varied, lets say by making it brighter and
therefore easier to detect, s; becomes larger and more and more of the distribution of s; ends up
being to the right of the threshold. This is illustrated in the figure below; with the shaded area
representing the probability of detection of a light at three different intensities: dim, medium and
bright.

s, dim

s, medium

s, bright

12.3 Thurstone’s Law of Comparative Judgment

In the previous section we have discussed how people can detect something such as a dim light in
a darkened room, a slight noise in an otherwise silent studio, or a small amount of a particular
smell. That experimental situation is called absolute judgment, and we modeled it by positing the
existence of a fixed threshold plus normal random noise. Now let’s contemplate how people
compare two objects, for example, which of two wooden blocks are heavier, a procedure known as
comparative judgment. In 1927 L. L. Thurstone published a paper in which he specified a model
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for the comparative process, generalizing the work that had gone on before by extending his
analysis to stimuli that did not have a specific physical referent. His chosen example was “the
excellence of handwriting specimens.” This sort of example must stand alone, in the sense that we
cannot rely on some sort of physical measure to help us quantify excellence. To Thurstone, that
did not really matter. He simply proposed that for any property for which we can compare two
objects, there is some psychological continuum. And the process by which we react differently to
the several comparison objects is just called the “discriminal process.”

We should not let this slightly anachronistic language throw us off. Thurstone’s contribution was
fundamental and highly applicable to 21* century marketing. Suppose I ask you to compare two
soft drinks and to tell me which one you prefer. This is the situation that Thurstone addressed.
We can use his method to create interval scale values for each of the compared brands, even
though we are only collecting ordinal data: which of the two brands is preferred by each subject.
This is the essence of psychological scaling — use the weakest possible assumptions (i. . people
can make ordinal judgments of their preferences) and still end up with interval level parameters.
In the case of preference judgments, these parameters are usually called utilities, based on the
economic theory of rational man.

To create an interval scale, Thurstone borrowed a data collection technique called paired
comparisons. In paired comparisons, a subject makes a judgment on each unique pair of brands.
For example, with four brands; A, B, C and D the subject compares A and B, AC, AD, BC, BD
t(t—1)

2
be added here. For one, it turns out that just looking at pairs is not the most efficient way to scale
the t brands. Despite this, the mathematics behind Thurstone’s Law is very instructive.

and CD. In general there are q = unique pairs among t brands. An additional point should

Lets look at a miniature example of paired comparison data. Consider the table below where a
typical entry represents the probability that the row brand is chosen over the column brand.

A B C
Al - .6 N
Bl 4 - 2
Ccl3 8 -

Each table entry gives the Pr[Row brand is chosen over the Column brand]. Such a table is
sometimes called antisymmetric, as element i, j and element j, i must sum to 1.0. As such, we can
use the q non-redundant pairs that appear in the lower triangular portion of the table as input to the
model

Another point is that there are two different ways to collect data. If the brands are relatively
confusable, you can collect data using a single subject. Otherwise, the proportions that appear in

the table are aggregated over a sample of individuals.

As before, we will assume that the process of judgment of a particular brand, such as brand i, leads
to an output, call it s, We further hypothesize that for brand i

;=5 +¢;. (12.9)

Similarly to what we did before in Equation (12.4), we further assume that

ei~N(0,57 ) with (12.10)
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Cov(e, ¢) =0, =100, (12.11)

Y]

We hypothesize that brand i is chosen over brand j whenever s; > s. This situation, which as
shown below, bears a certain resemblance to a two sample t-test:

Draw s;

\
’

Draw s;
[}

' »
> Iss;>s?

Now we can say that the probability that brand i is chosen over brand j
pi= Pr(s, > sj) = Pr(s; - 8> 0).

So how will we derive that probability? Turning back a bit in this chapter, recall Equation (12.8)
which gave us an expression for the Pr(a > 0), namely ®[E(a) / \ V(a)], assuming that a is a
normal variate. In the current case, the role of a is being played by s; - s;and so we need to figure
out E(s; - s)) and V(s; - s)). The expectation is simple.

E(s, -s,)=E| (G, +¢,)+ G, —¢))]

=5, —s;,

since by our previous assumption the E(e;) = E(gj) = 0, and according to Theorem (4.4), the

expectation of sum is the sum of the expectations. As far as the variance goes, we can use
Theorem (4.9) to yield
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Giz G, 1
T

_ 2 2
=0; +0] —chij

2 2
=0; +0; -2r0,0 ;.

At this point we have all of the pieces that we need to figure out the probability that one brand is
chosen over the other. It is

py = Pr(s; >s;) =CD[(§i —§j)/\/ci2 +0] —216,0 } (12.12)

Thurstone imagined a variety of cases for this derivation. In Case I, one subject provides all of the
data as we have mentioned before. In Case II, each subject judges each pair once and the
probabilities are built up across a sample of different responses. In Case III, r is assumed to be 0
(or 1, it doesn’t matter), and in Cases IV and V all of the variances are equal — exactly in Case V
and approximately in Case IV.

12.4 Estimation of the Parameters in Thurstone’s Case Ill: Least Squares and ML

We will continue assuming Case III, meaning that each brand can have a different variance, but
the correlations or the covariances of the brands are identical. By convention we tie down the

metric of the discriminal dimension, s, by settings,= 0 andc; = 1. We will now look at four

methods to estimate the2(t—1) unknown parameters in the model, namely, the

valuess,,S,, -, S,, G5, 6., -, 6. These methods are unweighted nonlinear least squares,

weighted nonlinear least squares, modified minimum y and maximum likelihood. Unweighted
nonlinear least squares begins with the observation that with the model,

Pr(s; >s;) = CD[(gi -5 )/m} ’

o . - . -1
we can use the inverse normal distribution function, @' (") on both sides. To understand what ®

does, lets remember what the @ function does — remember that @ is the standard normal

distribution function. For example, ®(1.96) = .975, and ®(0) = .5. If ® takes a z score and gives
-1

you the probability of observing that score or less, @ takes a probability and gives you a z score.

So @ (.975) = 1.96, for example. What this means is that if we transform our choice probabilities
into z scores, we can fit them with a model that looks like

O '[Pr(s; > 5,)] :qfl{q)[(gi —§j)/1/cf +<ﬂ}
2;=G -5/l +o7 .

(12.13)
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where Z; is the predicted z score that corresponds to the choice that brand i is chosen over brand j.

Now of course we have a string of such z scores, one for each of the q unique pairs,

B - = [ 2
Z, :(sl—sz)/ c; +0;
A —_ [ 2
2, = (5, _53)/ G, +03

A = - [ 2
Ziay = G _St)/ o toy .

In unweighted nonlinear least squares we will have as a goal the minimization of the following
objective function —

f:ii(zij—ﬁij)z (12.14)

i=l =i+l

where the summation is over all q unique pairs of brands. This technique is called unweighted
because it does not make any special assumptions about the errors of prediction, in particular,
assuming that they are equal or homogeneous. In general, this assumption is not tenable when we
are dealing with probabilities, but this method is quick and dirty and works rather well. We can

use nonlinear optimization (see Section 3.9) to pick the variouss, and ; values which are
unknown a priori and must be estimated from the sample. We do this by picking starting values
for each of the unknowns and then evaluating the vector of the derivative of the objective function

with respect to each of those unknowns. We want to set this derivative vector to the null vector as
below,

[ 0/05, |

of/cs,

of/as, | |0

IR (12.15)
oflac? | |0

oflds2 | |0

ofloc? | | 0]

but we must do this iteratively, beginning with starting values and using these to evaluate the
derivative. The derivative, or the slope, lets us know which way is “down”, and we step off in that
direction a given distance to come up with new, improved estimates. This process is repeated
until the derivative is zero, meaning that we are at the bottom of the objective function, f.

The next approach also relies on nonlinear optimization and is called weighted nonlinear least
squares, or in this case, it is also known as Minimum Pearson z2, since we will be minimizing the
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classic Pearson Chi Square formula. We will not be transforming the data using® ' (-) . Instead,
we will leave everything as is, using the model formula

b, =0 G, -5)/\foi +o; |

Our goal is to pick the s, and the &} so as to minimize

1= ZZM (12.16)

- npy;

which the reader should recognize as the formula for the Pearson Chi Square withnp;; a different
way of writing the expected frequency for cell i, j. Note that in the above formula, the summation
is over all off-diagonal cells and that p; = 1 — p; and of coursep;, =1-p;. As an alternative, we

can utilize matrix notation to write the objective function. This will make clear the fact that
minimum Pearson Chi Square is a GLS procedure as discussed in Section 6.8, although in the
current case our model is nonlinear. Now define

p'=lp. P - Pl
and

p'=lp. P - Punl-
Note also that for each element in p,

p;(1—-py)

V(pij):V[pij_f)ij]: n (12.17)

where n is the number of observations upon which the value p; is based. Using this information,
we can create a diagonal matrix V, placing each of the terms p;(1-p;) / n on the diagonal of V in

the same order that we placed the pair choice probabilities in p and p. In that case we can say

V(p)=V. (12.18)

Now we will minimize

2 =(p-p) V'(p-p) (12.19)

which is equivalent to the previous equation for Chi Square, and which is a special case of
Equation (6.23). This technique is called weighted nonlinear least squares so as to distinguish it
from ordinary, or unweighted, least squares. Also, remember that the elements inp, that is, the

predicted pair choice probabilities, are nonlinear functions of the unknowns, thes, and ;. For
this reason we would use the nonlinear optimization methods of Section 3.9 here as well.

Judgment and Choice 155



A third method we have of estimating the unknown parameters in the Thurstone model is called
Modified Minimum #* or sometimes Logit 7°. In this case the objective function differs only
slightly from the previous case, substituting the observed data for the expectation or prediction in
the denominator:

t t A N2

. (np; —npy)

2 _ 1 ij

32 = 2 2 o (12.20)
1 J# 1j

This tends to simplify the derivatives and the calculations somewhat, but perhaps is not as
necessary as it once was when computer time was more expensive than it is today.

Before we turn to Maximum Likelihood Estimation, it could be noted here that we might also use

a Generalized Nonlinear Least Squares approach that takes into account the covariances between
different pairs (Christoffersson 1975, p. 29)

(12.21)

Cov(pij$pkl) _ Piju _npijpkl

where pjjq is the probability that a subject chose i over j and k over 1. These covariances could be
used in the off-diagonal elements of V.

Finally, we turn to Maximum Likelihood estimation of the unknowns. Here the goal is to pick the
5, and the 67 s0 as to maximize the likelihood of the sample. To begin, we define

f; = np;;, that is, since

i. e. the fj; are the frequencies with which brand i is chosen over brand j. We also note that

n—f.

1

Pj =l_pij = "

We can now proceed to define the likelihood of the sample under the model as
-1t f. n_fij
4=TT1118:" a-5p . (12.22)
=l =it
Note that with the two multiplication operators, the subscripts i and j run through each unique pair

such that j > i. The log likelihood has its maximum at the same place as the likelihood. Taking
logs on both sides leads to

t—1 t
In(%) =Ly = DD f;Inpy +(n—f;)In(1 - py) (12.23)

i=l j=i+l

which is much easier to deal with, being additive in form rather than multiplicative. Note here that
we have used the rule of logarithms given in Equation (3.1), and also the rule from Equation (3.3).
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The expression L, gives the log likelihood under the model, assuming that the model holds. The
probability of the data under the general alternative that the pattern of frequencies is arbitrary is

t—1 t fij n_fij
N :H Hpij (l_pij )- (12.24)

i=l =it

Analogously to L, define L4 as In(4,). In that case

~2 /O
72 ==2In—>=2[L, -L,]. (12.25)

A

Now we would need to figure out the derivatives of %’ with respect to each of the unknown

parameters, thes; and o7 ,and drive those derivatives to zero using nonlinear optimization as
discussed in Section 3.9. When we reach that point we have our parameter estimates.

Note that for all of our estimation schemes; unweighted least squares, weighted least squares,
modified minimum Chi Square, and Maximum Likelihood; we have q independent probabilities [t
(t—1)/2]and 2 (t— 1) free parameters. The model therefore has q — 2 (t — 1) degrees of freedom.

12.5 The Law of Categorical Judgment

In addition to paired comparison data, Thurstone also contemplated absolute judgments, that is,
when subjects assign ordered categories to objects without reference to other objects. For
example, we might have a series of brands being rated on a scale as below,

Like it a lot — Like it a little bit — Not crazy about it — Hate it
[] [] [] []

which is a simplified (and I hope marginally whimsical) version of the ubiquitous category rating
scale used in thousands of marketing research projects a year. We assume that the psychological
continuum is divided into four areas by three thresholds or cutoffs. In general, with a J point scale
we would have J — 1 thresholds. We will begin with the probability that a subject uses category j
for brand i. We can visualize our data as below:
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The probabilities shown above represent the probability that a particular brand is rated with a
particular category. However, we need to cumulate those probabilities from left to right in order
to have data for our model. The cumulated probabilities would look like the table below.

Brand 1 .20 .50 .70 1.00
Brand 2 .10 .20 .80 1.00
Brand 3 .05 15 .30 1.00

Define the jth cutoff as ¢, We set ¢, = -0 and ¢, = +oo. We can then estimate values for ¢, ¢,, -,
¢;y. These cumulated probabilities are worthy to be called the p; and they represent the
probability that brand i is judged in category j or less, which is to say, to the left of cutoff j. Our
model is that each brand has a perceptual impact on the subject given by

s; =5, +e, with
e~ N(0, 67) .

In that case

p; =Prfs; <c;]="Prlc; —s, >0]. (12.26)
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But we have already seen a number of equations that look just like this! The probability that a
normal random variable is greater than zero, Equation (12.8), has previously been used in the Law
of Comparative Judgment. That probability, in this case of absolute judgment, is given by

p; =@le, -5, /o,]. (12.27)

The importance of how to model categorical questionnaire items should be emphasized here.
Such items are often used in factor analysis and structural equation models (Chapters 9, 10 and 11)
under the assumption that the observed categorical ratings are normal. On the face of it, that would
seem highly unlikely given that one of the assumptions of the normal distribution is that the
variable is continuous and runs from -oo to +oo! In the Law of Categorical Judgment, however, the
variables s; behave exactly that way. What's more, one can actually calculate the correlation
between two Thurstone variables using what is known as a polychoric correlation and model
those rather than Pearson type correlations.

12.6 The Theory of Signal Detectability

The final model to be covered in this chapter is another Thurstone-like model, but one invented
long after Thurstone’s 1927 paper. In World War II, Navy scientists began to study sonar signals,
and more germane to marketing, they began to study the technician's response to sonar signals.
Much later, models for human signal detection came to be applied to consumers trying to detect
real ads that they had seen before, interspersed with distractor ads never shown to those
consumers.

The theory of signal detectability (TSD) starts with the idea that a detection task has two distinct
components. First, there is the actual sensory discrimination process, the resolving power if you
will, of the human memory or the human senses being put to the test. This is related to our
physiology, our sensitivity as receivers of the signal in question, and the signal-to-noise ratio.
Second, there is a response decision involved. This is not so much a sensory issue as a cognitive
one. It is related to bias, expectation, payoffs and losses, and motivation. For example, if you
think you hear a submarine and it turns out you are wrong, the Captain may make you peel a crate
of potatoes down in the mess hall. However, if you don’t think that the sound you heard was a
submarine and it turns out to have been one, you and the Captain will both find yourselves in
Davy Jones’ Locker, if you don’t mind the nautical allusion. Given a particular ability to actually
detect the sign of a sub, you might be biased towards making the first error and not making the
second one. The TSD is designed to separate this response bias from your actual ability to detect
subs.

Returning to our group of consumers being asked about ads they have seen, there are a number of
ways to collect data. Assume that they have seen a set of ads. You are now showing them a
series of ads which include the ads that they have seen along with some new ones that were never
shown. Obviously, not including distractor ads is a little bit like giving a True/False test with no
false items. You can ask them to say Yes or No; I saw that ad or I didn’t. This is known as the
Yes/No Procedure. You can also ask them on a ratings scale that might run from “Very Sure I
Have Not Seen This Ad” on the left to “Very Sure I Have Seen This Ad” on the right. This is
known as the Ratings Procedure. Finally, you can give them a sheet of paper with one previously
exposed ad on it, and n - 1 other ads never before seen. Their task would be to pick the
remembered ad from among the n alternatives, a procedure known as n-alternative forced choice,
or n-afc for short. These procedures, and TSD, can be used for various sorts of judgments:
Same/Different, Detect/No Detect, Old/New, and so forth. At this point, we will begin discussing
the Yes/No task. The target ad that the consumer has seen will be called the signal, while the
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distractor ads will be called the noise. We can summarize consumer response in the following
table:

Response
S N
Hit Miss
False Alarm  Correct Rejection

Reality IS\I

Here the probability of a Hit plus the probability of a Miss sum to 1, as do the False Alarm and
Correct Rejection rates. The consequence of a Yes/No trial is a value on the evidence continuum.
The Subject must decide from which distribution it arose: the noise distribution or the distribution
that includes the signal. We can picture the evidence distribution below.

PRy Mgl + Nokes Triake
L (D

S,

.\E“\..
or the

[ & Enidemyes

Hﬂ“m;

The x axis is the consumer's readout of the evidence to the consumer that the current trial contains
an ad that they did indeed see. However, for whatever reason, due to the similarity between some
target and some distractor ads, or other factors that could affect the consumer's memory, some of
the distractor ads also invoke a relatively high degree of familiarity. The subject’s task is difficult
if the two distributions overlap, as they do in the figure. The difference in the means of the two
distributions is called d’. The area to the right of the threshold for the Signal + Noise distribution,
represented by lines angling from the lower left to the upper right, gives you the probability of a
Hit, that is the Hite rate or HR. The area to the right of the Noise distribution gives you the False
Alarm rate, or FAR. In the Figure, this is indicated by the double cross-hatched area. For noise
trials we have

and for signal + noise trials
X, =X+e+d'

where the parameter d' represents the difference between the two distributions. We will assume
that

e ~N(0, 6%
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and we fixX=0and 6’ = 1. Define the cutoffas c. Then
HR =Pr [Yes | Signal] = Pr(x, > c) (12.28)
=Pr(x,—c>0).
From Theorem (4.4) we can show that
E(x,—c)=d-c
and from Equation (4.8) that
V(xs—c):GZZ 1
so that
HR=®(d' - ¢) (12.29)

from Equation (12.8). As far as noise trials go,

FAR =Pr[Yes | Noise] = Pr(x, > ¢) (12.30)
=Pr[x,—c>0] .
Since
E(x,—c)=-c
and

V(x,—¢)=c"=1,
we deduce that the
FAR=® (-c). (12.31)
We can therefore transform our two independent data points, the HR and the FAR, into two TSD
parameters, d’ and c. We can not test the model since we have as many parameters as independent

data points. In order to improve upon this situation, we now turn to the Ratings procedure.

With ratings, we use confidence judgments to supplement the simple Yes/No decision of the
consumer. The picture of what is going on under the ratings approach appears below;
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Very sure Very sure
noise noise signal signal
Signal | .30 .30 .20 .20
Noise | .20 .10 40 30

Just as we did in Section 12.5 with the Law of Categorical Judgment, we cumulate this table,
which results in a stimulus-response table looking like

.30 .60 .80 1.00
.20 .30 .70 1.00

Signal
Noise

Each of the J-1 cutoffs, the ¢, defines a Hit Rate (HR,) and a False Alarm Rate (FAR)). Plotting
them yields what is known as a Receiver Operating Characteristic, or ROC. Our pretend example
is plotted below:
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The shape of the ROC curve reveals the shape of the distributions of the signal and the noise. If
we used z score coordinates instead of probabilities, the ROC should appear as a straight line.
This suggests that we could fit the ROC using unweighted least squares. We will follow up on
that idea shortly, but for now, let us review the model. For the Hit Rate for cutoff j we have
HR; = Pr[x, - ¢;> 0]
=0 [d-¢)/c] (12.32)
while for noise trials we have

FAR, = Pr[x, —¢;> 0]

=D (-¢) (12.33)

Now we have 2-(J — 1) probabilities with only J + 1 parameters: d’, Gf,cl, C,, -, €4 Of course, we

could use weighted least squares or maximum likelihood. Or we could plot the ROC using z
scores and fit a line. In that case, the equation of the line would be

We close this chapter with just a word about the n-afc procedure. You can run this technique
either sequentially or simultaneously. In either case, the consumer is instructed to pick exactly
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one out of the n alternatives presented. There are no criteria or cutoffs in play in this procedure.
According to the TSD, the percentage correct can be predicted from the area under the ROC curve.

12.7 Functional Measurement

We wrap up this chapter with a quick overview of what is known as functional measurement. We
started the chapter talking about the relationship between the physical world and the mental
impressions of that world. To round out the picture, after the sense impressions are transformed
into internal stimuli, those stimuli may be combined, manipulated, evaluated, elaborated or
integrated by the consumer into some sort of covert response. Then, this covert response is
transformed into an observable behavior and voila, we have data to look at! A diagram will
facilitate the explanation of the process:

n, ————— 5,=V(n)
n =YD — ™
r:I(S]’SZ"”3SJ) —by:M(r)

ceemmmmmemeoooeo > /
n, —m— s, =V(n;)

On the left, the inputs are transformed into mental events, we can call them discriminal values by
the function V(-). In the case of physical input, V(-) is a psychophysical function. In the case of
abstract input, we can think of V() as a valuation function. Then, the psychological or subjective
values are integrated by some psychological process, call it I(*), to produce a psychological
response. This might be a reaction to an expensive vacation package that goes to a desired
location, or a sense of familiarity evoked by an ad. Finally, the psychomotor function M(-)
transforms the mind's response into some overt act. This could be the action of putting an item in
the shopping cart, or checking off a certain box of a certain questionnaire item. With the help of
conjoint measurement, certain experimental outcomes allow all three functions to be ascertained.
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Chapter 13: Random Utility Models

Prerequisites: Sections 12.1 - 12.4

13.1 Some Terminology and a Simple Example

The subject of this chapter is a type of model known as a Random Utility Model, or RUM. RUMs
are very widely applied marketing models, especially to the sales of frequently purchased
consumer packaged goods; in other words; the kind of stuff you see in a supermarket. All of the
models in this chapter logically follow from Thurstone’s Law of Comparative Judgment that we
covered in Chapter 12. However, in this chapter we will consider the situation in which
consumers pick one brand from a set of more than two brands, and we will also contemplate
distributions other than the normal. We can summarize the assumptions of Thurstone’s Law, and
of the models in this chapter, as follows:

Assumption one is that choice is a discrete event. What this means is that choice is all-or-nothing.
The consumer, as a rule, cannot leave the supermarket with .3432 cans of Coke and .6568 cans of
Pepsi. They will tend to leave with 1 can of their chosen brand, and 0 cans of their not chosen
brand. Thus choice is not a continuous dependent variable.

Assumption two is that the attraction or utility towards a brand varies across individuals as a
random variable. In Thurstone’s Law, we called this the discriminal dispersion and we assumed it
was normal. By using the term utility, we are being consistent with economic theory. We also
fequently use the term attraction, we are being consistent with the retailing literature. In any case,
assumption two is all about the word “random” in the label random utility model.

The last assumption is that the consumer chooses the brand with the highest utility. This makes
our consumer an economically rational being. Thank goodness.

In general, we will be concentrating on the class of RUMs known as logit models. These are
models that make a distributional assumption different than the normal and lead to much simpler
calculations. In the next sections we will be introduced to the logit model in all its glory. But
before that happens, here is a list of other important terms that will come into play:

Dichotomous dependent variable — any dependent variable capable of taking on exactly two
discrete values.

Polytomous dependent variable — any dependent variable capable of taking on exactly J > 2
discrete values.

Income type independent variable — a variable that varies over consumers. A logit model
incorporating only income type variables is sometimes be called a polytomous logit model.

Price type independent variable — a variable that varies over consumers and brands. A logit model
with at least one of these is often called a conditional logit model. We might note here however,
that there is no difference in the way we treat price and income variables if we are looking at a
dichotomous dependent variable. The difference only comes into play when there are three or
more possible choices.

Aggregate data — data that have been summarized for each unique combination of the independent

variables. To keep things simple, let us say we have just one independent variable; coupon value;
and that there are exactly four different values. For each coupon value, we might count up how
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many people buy the product (that is, use the coupon) and how many do not. The choice
probabilities for each of the four coupon values constitute the data analyzed as the dependent
variable. We would obviously have four data points, each point being two numbers: the choice
probability and the value of the coupon. We can estimate this sort of data using either Generalized
Least Squares or Maximum Likelihood.

Disaggregate data — raw data consisting of individual choices. It is possible that each observation
has a unique combination of values on the independent variables. Maybe there are hundreds of
different coupon values and hundreds of different possible prices. Each data point might come
from a single individual, with a one signifying that that person bought the product, and a zero
signifying that that person did not buy. Disaggregate data can only be analyzed by ML.

We are going to start with a simple example involving retail choice. In the small southern city of
Rome, Alabama, there is a hypothetical food store that carries hard to find Italian items. A

sample of individuals was asked, “Do you shop at the Negozio?” We define the dependent
variable such that

B 1if Yes (13.1)
Y1 70if No '

for person i. We can also define x; as the distance between person i’s residence and the Negozio.
Of course, we will need to also define ¢; as a random, independent error. We could use the linear
model of Chapter 5 to fit this model. In that case we would have

Vi=BotxB, +e (13.2)

Vi =E(y) =By +xB, . (13.3)

Now we are going to define the probability that individual i chooses (has chosen) the store and the

complement of this probability. For the former, we will use the notation p;, and for the latter p,,.
Given this notation, we can say that the predicted choice probabilities are

p,, =Pr[y, =1]=Pr[Yes] and (13.4)

pi, = Prly; =0]=Pr[No]. (13.5)

It should be clear thatp,, =1—p,,. It must also be the case, given the definition of what we mean
by expectation that

E(y;)) = (l)f’n + (0)1312

=Pir-
Combining this result with Equation (13.3), we conclude that
Py =Bo +xB, . (13.6)

There are two problems with this conclusion. First, a choice probability, really; any probability;
has to obey the rule
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0<p, <1 (13.7)

but there is no requirement that ordinary least squares estimation will produce predicted values
between 0 and 1. In other words, OLS may produce logically inconsistent choice probabilities. A
second important feature of probabilities is that

Pi +Pi, =1 (13.8)

but again, we are not guaranteed that regression will produce complementary probabilities that add
up to 1. In other words, the predicted values are not sum constrained. There is also a third
problem. With OLS regression we make the Guass-Markov assumption [Equation (5.16)] in order
to perform hypothesis testing.  Specifically, in regression we generally assume e ~
N(0, ;) witho! = s for all i, that is; e ~ N(0, o I). But in the model we are now examining,
there are exactly two possible values for e, —

e. :{1_([30 +x;B,) fory;, =1 (13.9)
0-(By+x;p;) fory, =0.

By the definition of variance [see Equation (4.7)], we have
V(e) = E[e; — E(e)]” (13.10)

but since E(e,) = 0, the expression above simplifies to V(e,) = E(e}). And combining Equations
(13.9) and (13.10) we see that

E(eiz) = 1311(1_130 _X1B1)2 +1312(_Bo _X1B1)2 .

Note that since e, is discrete, we use Equation (4.2) for its expectation. Combining the equation
above with Equation (13.6) implies

E(eiz) =p,( _1311)2 +(1- f’n)(‘f’n)z
21311(1_f)11) (13-11)

=By +x;B)A-By —x;B,)).

But now we have a problem. The formula for the variance of the error has the independent
variable on the right hand side. What’s more, that independent variable has the subscript i hanging
off it. How can the variance of ¢, be the same for all i when it depends on x;? It cannot — we have
heteroskedasticity of error variance. Our OLS parameter estimates might be unbiased and
consistent, but they are not efficient. Standard errors and significance tests do not hold. Although
by definition, OLS produces the smalleset sum of squared error that can be, we have now
uncovered three problems with using it for choice data: logical inconsistency, the lack of the sum
constraint, and heteroskedasticity. Some simply find it inelegant to use a procedure capable of
predicting a probability of less than zero or more than one.
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There are a number of ways to fix these problems. You could at least take care of the logical
inconsistency by using the linear probability model. This model simply forces ¥,to 0 and 1

whenever it shows up outside the range:

0 if B, +x,B, <0
f)u: Bo +x:B, 1 0<By+x,B, <1
1 if B, +x,B, 1.

A second more theoretically grounded model is the Probit model. The probit model uses the same
assumptions of the Thurstone model as presented in Chapter 12 namely that the utility of each of
the choice options is normally distributed. In that case, we have

Py = E,(Bo +xB,) =D, +x;B,)
(13.12)
Bo+xiBy

= J. Lexp_—zzdz
J o \2n 2 .

We could linearize the model by applying the PROBability Inverse Transform, or PROBIT

. -1 . . . .
transform (i.e. @ ) and see the meaning of the name of this technique, as well as use unweighted
least squares on the resulting z scores

®7][f)i1]: Zy =By +x,B, .

Unweighted least squares would not solve the third problem, namely heteroskedasticity. There are
a variety of other estimation schemes for probit regression that would deal with this problem, but
now we turn our attention to a very widely used model for choice data, the logit model. Note that
in Equation (13.12) the appearance of the function F,. Another version of this F function might be
based on a transformation other than the normal or probit. This is illustrated below:

eBO +x;B,

P :FL(BO+XiBI):m . (13.13)
1+e"0 il

Fp is called the logistic function and so the model is sometimes called logistic regression. A
visual representation is given below:
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The logistic function is highly similar to the normal ogive. There are some important differences
between it and the normal when there are more than two choice objects, but we will get to that
topic later. For now, you might note that you can interpret the sign of the  in much the same way
that you can in ordinary regression. A positive 3 implies that the choice probability goes up as x
goes up. When dealing with this function, we can make the notation cleaner by defining u; = 3 +
x;PB; so that

u.
~ (S
Piu = u
I+et
. . —u. , _—u.
Now, multiply both sidesbye /e !
s e
il =
1+ei e
1
1+e U

which shows another way to write the model. In general, we will use the previous version,

el
(13.14)

Pi = .
1+ei

As such, lets look at the probability that the respondent does not go to the store. That is
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(13.15)

1+ei
Now look at the expression for p,, in Equation (13.14) and for p,, in Equation (13.15). In effect

we have a/(a+b) for the one and b/(a+b) for the other, with 1 and et playing the roles of a and b.
The logistic model is a special case of Bell, Keeney and Little’s (1975) Market Share Theorem
and what Kotler (1984) once called the Fundamental Theorem of Market Share. We can make
this theorem more general by using the following notation:

u.
In our case, there are J =2 brands, a, = € 'anda, = e’ = 1.

The logit model is not a linear model but it can be linearized. Repeating the model,

el
Pu =

1+l

and multiplying both sides by 1/p;, , the reciprocal of Equation (13.15), yields

A i 1+et
Pn/pi2 = 0 1
I+ei
u.

Now, we can take logs to get

In(p;, /Piy) = u; =By +x,B,.
The left hand side is called a logit. You can transform your choice probabilities into logits and fit
a linear model using unweighted least squares. This, at least, solves both the logical consistency
issue and the lack of sum constraint when OLS regression is applied to raw probabilities. It does
not deal with the issue of efficiency, however. For that we will need to contemplate weighted

least squares or maximum likelihood.

13.2 Aggregate Data
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Imagine that we have a table of data, a table of different groups really. Our table might look like
the one below, which shows N populations and the frequency of Yes’s and No’s within each
population:

Response
Population Yes(y,=1) No(y;=0) x
1 £, fi, Xy
2 £ £, X,
i £, £, X;
N f\ fy XN

In the table, £, is the frequency with which members of group i say Yes, or simply put, the number

> Iy
of people living at distance x,; from the Negozio who go to that store. In what follows, it will be
useful to define

n,=f,+1f,
py =1, /n
2i,12 = ln(]au/f)iz)

and analogously,

b = ln(Pn/piz) .

Of course, the distinction between ¢, |, and Zm is important. The first one is the observed logit and

the second one is the logit as predicted by the model. Even when the model holds in the
population studied, sampling error will see to it that they are not identical. To make an analogy to
regression, we can say

by =Bo+XBy+ (61, —6) -
Without proof, let me claim that
E(¢,,)=¢, (13.16)
and that

V(gi,lz) = V(gmz - 2i,12)
(13.17)
1

n;P;iPiz

In summary, what this means is that in our model,
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b =Bo+XBy + (6 —6i1),
the error term in parentheses has
E(ei,lz _2i,12) =0and

A 1
V(ém - 4,12) == A -
n;p;P;»

What’s more, it can be shown [this is related to but not the same as Equation (6.2)] as n, — o
b — Zi‘lz - N[O’ 1/nif)i1f)iz] (13.18)
and in fact the approximation to the normal is already quite close by the time n; > 30.

13.3 Weighted Least Squares and Aggregate Data

. . . 2 o
Under ordinary circumstances, E(y, - B, + x,8) has the constant variance ¢ , and we minimize, as
in Equation (5.21),

SSeior = Z(Yi -Bo _XiB1)2-

The residual in our case, that is the term in parentheses above, has variance1/n;p,p;, which is

clearly not a constant, since the subscript i appears in the term. In three places! We can, however,
use this knowledge to stabilize the variance. We will create a set of weights consisting of the
reciprocal of the variance of each observation. Specifically, we define

W, =1n,p;Py
as the weights that we will use in the weighted least square (WLS) formula SSg,,,, formula below

S = D Wiy =By —x,8,)" (13.19)

Here we might note that the weights serve to emphasize or de-emphasize the influence of a
particular observation depending on its sampling variance. The higher the variance, the less
influence the observation has in the determination of the SSg.o;.

At this time we are going to shift into matrix notation so as to come up with a more general
expression for WLS. Lets say that we have one independent variable, as before, consisting of
travel distance to our shop in Rome, AL. Call that variable x,. A second independent variable
might be the family income of each respondent, x,. Then
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I X, Xp X
I X, Xy X,
X = -

’

Loxy xp, X;.

’

_1 XNt XNz L XN
and

Bo
B= Bl
B,

Note that the X matrix has N rows, with an upper case N used to maintain a distinction between
the number of populations, and n,, the number of observations within each population i. Now we
can write our model as

eBo +X;B; +X;,B,

Py =
1 1+eBo +X;B; +x,B,
(13.21)
lJreXi'B
or using the logit expression,
2 _1 f)il !
2 =In——=xip. (13.22)

This second way of expressing the model is convenient for estimation using the linear model. To
do so, we begin by stacking the predicted and observed logits from each of the N populations into
the vectors

(= [61,12 22,12 2N,12]
¢ = [51’12 by o 5N,12J'
The model is then
{ = Xp (13.23)
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Now, we take the variances for each terme, |, — 21,12 and place them into the covariance matrix V as

diagonal elements:

1/nlf)uf)lz 0 0
V= 0 1/“215211322 0
0 0 l/an)le)NZ

Also note that we can relate the elements of this matrix to the previous scalar notation in Equation
(13.19) because

w, 0 0
v 0 w, 0
100 Wy |

In matrix terms, our objective function is

f=(-¢)V'(-0)
(13.24)
=(-Xp)V'(¢-Xp).
The f function, at its minimum, is distributed as X2 when the model holds in the population. Thus,

it serves as a test of the null hypothesis that the model is correct. This is basically the same
2 A .
approach we used in Equation (12.19), with Minimum Pearson . If we were to replace the p's in

the V matrix with p’s, we would have Modified Minimum xz. When we set of/0p = 0 we find
B=[X'V'X]"'X'V'¢
as the GLS parameter estimates. Since V(¢) = V(¢ —¢) = V we further find that
V) = {[XV XXV IV XVIXT XV

=[X'V'X].

Following the same line of reasoning that we used in Section 6.8 (and also Section 17.4), we can
use the above matrix for confidence intervals or to test hypotheses of the form

Ho: Bj =0
or more generally

Hp:a’'B-c=0
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and create the usual t-statistic with the denominator being formed by the scalar
a’ (X'V'X) a, ie.

a’f% -c
Ja'(X'V'X)"a

For multiple degree of freedom hypotheses of the form

t’\:

Hy AB-¢c=0
we use
58 = (AB-O[AX'V'X) " AT (Ap o),
and for error,

SSErmr = (y - )(ﬁ),\/71 (y - Xﬁ)

13.4 Maximum Likelihood and Disaggregate Data

With disaggregate data, we have household level observations. For the time being we return to the
relatively simple case of a single independent variable, our distance measure from household i to
the store. It is quite possible that each household has a unique value on this variable, especially if
it is measured as a continuous variable. In addition, for each household we have a 1 if that
household goes to the store and we have a 0 otherwise. Modifying our sample size notation once
again, lets say we have N households altogether, with N, of them having said “Yes” and being
scored with a ‘1’ on the dependent variable, and N, of them having said “No.” The model for the
choice probability stays the same as before, we have just returned to the situation of a single
independent variable for now,

. eBo +x;B,
Pi =

- 1+ eBo +x,,B,

’
B exi~ﬁ

i

1+ exi'li

but our objective function will be quite different. To begin creating the objective function, we
might consider sorting the data into two piles: in the first pile we place the N, households saying
“Yes” and in the second, the remainder who have said “No.” We note that under the model, the
probability of observing our N, Yes’s and the rest of the sample with its No’s, is

N, N
/0 :Hf)ili Hf)iz (13.25)
i=1

i=N, +1
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assuming that each observation is independent of all the others. This notation emphasizes the fact
that there are two piles of observations: the first which consists of households going to the store,
and the second consisting of those who do not frequent the place. Another way to write the
likelihood is perhaps more clever, and relies on the fact that we have decided to score y, = 1 if
household i buys from the store and y, = 0 if it does not. Rewriting 4 we have

N
1 PP AT N e 2

/OZH(pn)yl (Pi2) Vi (13.26)
=1

which takes advantage of the fact that for any value a, a = a while a’ = 1. This second form
avoids having to sort the observations. However, returning to Equation (13.25), we can flesh out
the predicted choice probabilities. When we do that, the likelihood is seen as

N, By +x,B, N
4=11 e (;J (13.27)

3 1+eBo +X;B, s Ve 1+eBo +X;,B,

Since the maximum of the likelihood occurs at the same place as the maximum of the log
likelihood, we will take logs and get

L, =In(,)
(13.28)

- i(ﬁo +XiB1)—iln(l+eB0 +x,B, j

To go from the previous expression for 4, in Equation (13.27) to the second line of Equation
(13.28) for L, immediately above requires that you notice the denominator is identical for
bothp, and p,,, and that In(1) = 0. That explains why the first summation in Equation (13.28)
goes to N, and the second goes all the way to N. We now wish to set

oL, oL,
B, B,

and solve forﬁo and ﬁlusing nonlinear optimization as is discussed in Section 3.9. To that end,
the second order derivatives are quite useful. These provide additional information about the
search direction. But what’s more, they can be used to figure out the covariances and variances of
the ML parameter estimates, which allows us to do hypothesis testing. For example, lets start with
OL/0B,, and think of it as a function of the value of 3;. How does 0L/0B, change as 3, changes?
The limit of the slope of 0Ly/0B, (treated as a “dependent variable” in the calculus sense) on f,
(treated as the “independent variable”) is the second order derivative and it may be written

) (8L0j_ o’L,  d’L,

B, \ OB, ) B,OB, BB,

Think of this as element h,, and h,, in the symmetric H matrix, called the Hessian. Element 1, 1 is
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"B, LBy ) OBodB,  OBy0Bs

d (aL0 ) oL, aL,

and of course element 2, 2 would be defined analogously. Minus the expectation of the Hessian is
called the Information Matrix, i. e. ~E(H). Finally, the inverse of the information matrix gives us
the variance-covariance matrix of the unknowns, which is to say

V() =[-E(H)]".

We can now test hypotheses using this matrix to provide the denominator of the t-statistic. Note
that the Hessian is square and symmetric, and it will have one row (and one column) for each
unknown parameter.

A final observation, before we start thinking about what happens if we have three choice options
as opposed to only two, is that we can create an R” like statistic by comparing the log likelihood of
the model, with the log likelihood of a model that consists only of B, that is, it has no real
independent variables. This is illustrated below:

where L is the likelihood under the model with just an intercept.
13.5 Three or More Choice Options

The situation with three or more brands, or three or more store choices, or Web links, etc., is rather
more complicated than the two option case. Of course, we can say that

pitpptps=1

so at least we know something about the situation. However, there are now three potential logits:
In(p;,/p;3). In(p;, /p;3) and In(p,,/p;,). But

Py Py Pz

Piz Pis Pis

so one logit is redundant in the same sense that one of the three choice probabilities is not
independent of the other two: if you know two of the probabilities you can figure out the third by
subtracting the total of the other two from 1. With J brands, we will create J — 1 generalized
logits. It is traditional to use the last brand, often a store or generic brand, as the denominator.
The full model, called the Multinomal Logit model or MNL model is given below:

p=— (13.29)

where p; is the choice probability for brand j (j = 1, 2, -, J) for case i. In this context i could
either index populations, as would be the case with aggregate data, or individuals, which would be
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the case with disaggregate data. The vector xj; provides values for the independent variables for

brand j, observation i, while the vector 3; contains the unknown parameters for each independent

variable for brand j. We can express the model as a special case of the Fundamental Theorem of
Market Share,

a; = CXP(X;J'ISJ)-

By tradition, we set the attraction for the last brand, brand J, equal to 1, i. e. a,;; = 1 for all i, and

thus B, =[0 0 --- 0]. For ML estimation we pick elements of the 3, vectors to maximize
N, N, N
b :Hpil Hpi2 Hpu
i=1 i=N, +1 =N, +1

where we have sorted the cases into J piles corresponding to the choice option picked by that
individual.

13.6 A Transportation Example of the MNL Model

The following example is inspired by, but not identical to, an actual dataset reported in Currim
(1985), who considered the choice faced by household i between getting to work by car (1), bus
(2), or using the metro (3). Our explanatory variables are

I; Income of household i
Cl Cost (price) of alternative j for household i
CAV, Cars per driver for household i
BTR, Bus transfers required for member of household i to get to

work via the bus

One possible model for this situation might be

Pl —q 18, +(Cl —C})B, + CAVB,

i3

Pz =g, 41, +(C? ~CI)B, + BTR B;.
p

i3

Now we will have an opportunity to put into play some of the terminology we looked at in the
beginning of the chapter but have not used up to now. Lets look at the role of income in this
model. Income is constant across the choices that a family can make, but in the two logits, income
has a different coefficient (3, and 3,). The quality of the choice option might vary, and so income
may well contribute to families preferring choice 1 over choice 3, but it may lead to families
preferring choice 3 over choice 2.

Random Utility Models 181



The price variable, C!, varies across choice options as well as households. For one particular
family, a car trip may be $4.00 (including depreciation), a bus trip might be $1.00 and a trip on the
Metro could be $1.50. But whileC] varies, the coefficient B, is constant. Such a variable is

sometimes called generic. McFadden calls this sort of structure the conditional logit model. It is
also known as the simple effects model.

The variables CAV; and BTR; only apply to one alternative. Thus they are called Alternative
Specific Variables (ASVs). The o are also alternative specific variables. To be specific, they are
alternative specific constants (ASCs). You might imagine a MNL model with only alternative
specific constants . This would be quite similar to a Thurstone model, such as the Comparative
Judgment model discussed in Section 12.3, only in this case we have a distribution other than the
normal. In fact, in current context the ASCs function as a sort of error term. They represent the
attraction towards the brand that exists independently of any measured assets such as its price, etc.

For GLS estimation it makes sense to create a single linear equation for the logits. That equation
would look like this:

€3 L0 1, 0 C-C CAV, 0 |- -
(5 1 0 I, 0 C,-CJ CAV, 0 a‘
2
; 1 3 B
N,13 — 1 O IN 0 CN _CN CAVN 0 B
; 2
b3 o 1 o0 I, C -C; 0 BTR, 5
by, 0 1 0 1, C2-c3 0 BTR,||.’
B

‘ 0 1 0 I, Ci-C} 0 BTR LPs

L*N.23 | L N N VN N
(=XB. (13.30)

On the other hand, the best way to represent the model if we were going to do ML estimation is to
show it as the nonlinear equation for the choice probabilities as

X B;
By =———. (13.31)
! Ximp'
e "

m

13.7 Other Choice Models

There are a variety of related alternative forms for choice models, but for each model discussed in
this section, and more generally in this chapter with the clear exception of the probit model of
Section 13.10, we will be assuming the Fundamental Theorem,

aj

Py =—3
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We will be assuming that we have k marketing instruments, meaning that we have a set of
marketing variables perhaps including price, advertising effort, distribution effort, or some product
attributes. The conditional or simple effects MNL is

a; = exp()_ xyBy) - (13.32)

This model assumes that each marketing instrument has its own [ coefficient, but each brand’s
marketing efforts have the same result for marketing instrument k. In other words, there is a 3
coefficient for each marketing instrument (price, place, etc.), but these are constant across the J
brands.

Another type of simple effects model has been championed by Cooper and Nakanishi (1988). It is
called the Multiplicative Competitive Interaction (MCI) model and looks like

ay =[x . (13.33)

The MCI model follows in the footsteps of the economic Cobb-Douglas function of Equation
(16.3), often used for demand equations for continuous dependent variables.

We can also have differential effects models in which the impact of each brands varies. Perhaps
one of the brands is better than some of the others at leveraging its marketing efforts so it receives
more benefit per dollar spent on advertising, to use that instrument as an example. There is a
version of the differential effects model for the MNL,

ay =exp()_xyBy) (13.34)
k
and for the MCI:
_ Bjk
ay =] [x*- (13.35)
k

You will note that the beta coefficients have a subscript for the brand in the above two models.
Finally, there is the full extended model. In the case of the MNL, this has been called the universal
logit model:

a = exp(inikamjo : (13.36)
m k

There is also a fully extended MCI model,

a, =H Hxﬁfjk. (13.37)
m k

These include asymmetric cross effects of one brand on another.
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13.8 Elasticities and the MNL Model

How does our share change when we change the value of a marketing instrument? Lets assume
that we have a model with only one marketing instrument; price. In line with Section 16.1, we
define the price elasticity of market share for brand j as

8Pij X5
=T
i Pi

for observation i. According to the generic or simple-effects model,
a; = explocj + (xij - Xy )BJ or
a; =exp(a; +x;PB).
In order to figure out the elasticity, we must start with the derivative,

A -1
8pij 0
8Xij aXU ij Z im

m

In addition to the power rule and chain rule of the calculus (see Section 3.3), we need to note that
de’/da=¢"

and

f(x)
4€ 77 _ef®) . prx).
dx

In that case

-1

jiij :_aij[ZaimJ aijB+aijB(§aimj

i ™
A2 ~
= _pijB + pijB
= Bﬁij(l - f’ij) >
so that the elasticity is then
ey =PBx;(1-py). (13.38)

Since x;; appears in the expression for the elasticity, the elasticity is not constant and instead
changes along the price-share curve. The elasticity is also inversely proportional to the share
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which makes sense — the higher your share already, the harder it is to drive it closer to one by
dropping prices even more.

For the simple effects MCI wherea;; = XE , we have

€ = pa- f)ij)'

In contrast to the MNL model, the MCI model produces constant elasticities much like the Cobb-
Douglas function does for continuous dependent variables.

Marketing scientists are often interested in the cross elasticity for brand j with respect to some
other brand j’. This quantity summarizes the extent to which the share of j depends on the prices
set by the brand management of j’. This reveals the nature and amount of competition among the
brands in the choice set. By definition, the price cross elasticity of share for brand j with respect

to brand j’ is

D. X..
., = Py Xy (13.39)
8Xij’ Pj
The derivative for the simple effects MNL is
aﬁij A A
axij’ = pijpij’B
which makes the cross elasticity
e,y = —DyXyB- (13.40)

Since no j subscript appears on the right hand side, only j’, brand j’ has the same impact on all
other brands. This impact is proportional to the share of j. For the differential effects model, i. e.

4 = exp(aj + Xiij),

A

Cijy = TPy XyPy
each brand exerts a different pressure, but that pressure is the same on all the other brands.

That brand j' should exert the same pressure on all brands flies in the face of common sense. We
often think that some brands compete more with certain other brands and less with others. This
common sense notion is part of what is known as Independence of Irrelevant Alternatives.

13.9 Independence of Irrelevant Alternatives

Independence of Irrelevant Alternatives, or lIA as it is lovingly known, refers to the tendency of
the Fundamental Theorem to model competition in a very symmetric way. We will now discuss
the issue of asymmetric competition. Imagine that the transportation needs of a certain city are
served by two companies: The Blue Bus Company and the Yellow Cab Company. Imagine
further that these two companies split the market in half with each getting a market share of 50%.
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What would happen if a new competitor arrives, namely, the Red Bus Company. The
Fundamental Theorem would have us believe that the new market shares will be 1/3™ each. Does
this seem realistic to you?

The universal logit model can handle asymmetric competition. Technically speaking, however, it

is actually not a RUM! The only other model in this chapter to be able to deal with the problem of
ITA is presented next.

13.10 The Polytomous Probit Model

Again we will be concerned with the market share of brand j out of J different brands. The utility
of each brand is normally distributed over the consumers in the market. Each individual picks the
utility that is largest. We will define our model as

y=Bx+eg
where y is the J by 1 random vector of utilities described above, B is J by k and x is k by 1. This
model can include income or price type variables in x. Their presence determines the appearance
of B which, like in covariance structure models discussed in Chapter 10, or the ML MNL models

discussed earlier in this chapter, can have zeroes in various positions. The random input vector
can be characterized by noting that

£~N(0,X).

The share for brand j is

A

p; =Prly; >v;]

=Prly,—y; >0] forallj =]
Now define v}j) =y, —Yy;- Now we simply rewrite the expression for the share of brand j as
p, =Pr[v{ >0] forallj ]

For the next step, we will place all of the Vg;) for each brand j’ # j into the vector v, The action of

subtracting all of the other brands from brand j is obviously a linear operation. We will illustrate
this operation using brand 1 as our example. Define the J - 1 by J matrix

1 -1 0 0
R R 0
1 0 0 -1

for brand j = 1. As we can see, this M matrix differences all of the other rows from the first row
of any postmultiplying matrix. So in particular,

v =MDy
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and in general for brand j
D =My
Of course, Theorem (4.5) and Theorem (4.9) show us that

E[v?]=v? =MPy =MYBx and

V[v(j)] =y = M(j)EM(j), .

Therefore according to the multivariate normal distribution, presented in Equation (4.17), the
share for brand j is

0
A

G _ 5@y y Dy ‘(J) ) [ T )
Pj (27T)N/2IE(J)|1/2 !! eXP[ (V v ) p¥ (V )/2 dvJ 1d\/ dV1 .

Share is equal to the probability that the utility for brand j exceeds the utility for all other brands,
i #]
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Chapter 14: Nonmetric Scaling
Prerequisites: Chapter 7, Section 3.9

14.1 Additive Conjoint Measurement

In Chapters 5 through 7 we look at the classical statistical models from which we get our t-test,
ANOVA, and of course, regression. For example, in a factorial design, we generally assume that
our dependent variable is measured at the interval or ratio level, and we test to see if the cell
means combine in an additive way, or if instead, we need to include interaction terms. Nonmetric
additive conjoint measurement turns this reasoning exactly on its head. In this section we will
assume the additivity in order to learn something about the level of measurement of the dependent
variable. Or, we can make very weak assumptions about this measurement - i. e. that its merely
ordinal - and still capture the main effects of the factorial design.

In this section we will use a linear model, and for the most part we will assume that we have a
factorial design. For example, a consumer may be looking at a series of vacation packages. For
now, lets just say that each package has five destinations and four prices leading to 20 different
packages altogether. Our data might consist of a ranking (or possibly rating if there are not too
many ties) of the 20 vacation packages. In any case, we will assume that our data are ordinal.
Here are the steps that we will go through.

Step 0. Initialize a second version of the dependent variable,
y =Yy

where y is the original ordinal-scaled 20 by 1 column vector of the rankings for each of the 20
packages. As we will see, the y* vector will be the optimally scaled version of the data.

Step 1. Use least squares to fit an additive model. Our usual notation would have us fit a model
looking like

* A ¥

y =Xp+e=y + e

where X is a design matrix containing, lets say, effect coding (see Section 7.2) for main effects
only and the  vector contains those effects. We can also use scalar notation that allows us to keep
track of data from individual cells in the two way design. For example, looking at destination i
and price j we might have

Yi =4 +Bj+eij =Y ¢

where o represents the effect of being in row i (destination i) and f; captures the effect of being
in column j of the design, that is the column with price j. Note that since the S/; are optimally

rescaled anyway we do not have to worry about the grand mean. We can just absorb that in the
scaling. Step 1 is a least squares step where we pick the o, and the B; (or if you prefer the matrix

notation, the elements of the B vector) so as to minimize the sum of squared error. But now we are
going to go into a second least squares step.

Step 2. Find the monotone transformation that would improve the fit of the above model as much
as possible. We will be focusing on this step in this section, but for now, we can say that in Step 1
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we modified the parameters to fit the dependent variable, but in this step we are modifying the
dependent variable to better fit the additive model. Symbolically we can say that the new values

of the y; will be

A K

y:} =H, [Yij: Yij] .

This says that we will be modifying the optimally scaled dependent values (y'), based on the
ordinal data (y) and the linear model of the optimally scaled dependent variable (). The function
H,, is monotone, which means that the optimally rescaled dependent variables have to be in the
same order as the original ordinal data. Ordinal means that only the order of the numbers is

invariant, and the rescaled dependent variable honors that order, meaning that it is equivalent to
the original.

Step 3. Refit the additive model.

Step 4. If the model fits OK, stop. Otherwise go back to Step 2 and repeat.

The procedure alternates between two least squares steps with one (Step 1 above) fitting the linear
model minimizing the sum of squared error, and the other (Step 2 above) fitting the data
minimizing a sum of squares called STRESS. We are thus alternating least squares steps, and this
technique is part of a family of techniques that are called Alternating Least Squares or ALS. We
will discuss STRESS in just a little bit. Now let us jump into Step 2 in more detail, a step that we
call optimal scaling.

For the time being, to make our life easier, we will assume that there are no ties in the data. If we

sort the data, and revert back to one subscript that refers to each datum’s sort sequence, the
original ordinal data would look like

Y <Yy, <<y, . (14.1)

In that case, to honor or maintain this order, we impose on the optimally scaled values the
following constraints:

y, Sy, < <y,. (14.2)

We can picture the situation by looking at what is known as a Shepard Diagram, named after the
Stanford psychologist Roger Shepard,
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y" — transforme d data X

=<0
O x

The x’s represent the optimally rescaled data, and the 0’s are the predictions of that data from the
additive model. In particular, focus on the third data point. Due to the monotone restrictions, it
cannot pass the fourth data point. It can come right up to its value and tie it however, since
Equation (14.2) allows for equality. The program will move the y* value as close to its predicted
value as it can without violating the monotone constraints. In analytic terms, we minimize the
following quantity subject to the inequalities above:

STRESS = (14.3)

where}T/* is the average of the §fjk In effect, the denominator normalizes the value of STRESS. It

is the numerator that is where the action is. But remember, the formula is subject to the series of
inequalities given in Equation (14.2).

There are two ways to handle ties in the data. The primary approach occurs when y, =y,

implies y; < yj. Here we are treating the data as fundamentally continuous with thresholds. The

secondary approach is when when y, = y; implies y, = yj. Here we treat the data as truly discrete,

and we fully honor equalities.

The output from this procedure consists of the y;, called the utilities, and the o; and the f3;, called

part-worths. These can all be used to simulate various market conditions.

14.2 Multidimensional Scaling

Many of the models in this and other sections represent choice situations. Which brand do you
like more and which do you like less? Multidimensional Scaling, often abbreviated MDS, is
designed to get at the consumer’s perception of the brands rather than their preferences for them.
Later on we will bring preference back into the model, but for now we will focus on the way that
the consumer sees the brands. We will also focus on nonmetric MDS, meaning that we will
assume that the data are ordinal. Nonetheless, we will be able to fit a model with interval scaled
parameters, just as we did in the section on conjoint measurement.

192 Chapter 14



The MDS data collection procedure is one of the least obtrusive methods that exist in the world of
marketing research. The respondent’s job is to rank (or rate) pairs of brands as to how similar they
are. We might imagine a simplified experimental design with three brands A, B and C. The
respondent will tell us which of the three possible pairs, AB, AC, BC, are the most similar. Then
which pair is the next most similar, and so forth until all of the pairs are ranked as to their
similarity.

MDS uses a geometric model for similarity or proximity judgments. Brands judged highly similar,
according to the model, are represented near each other in a perceptual space. Conversely, brands
judged dissimilar find themselves distant in this perceptual space of r dimensions. Later we will
get back to the dimensionality of the space. Now, lets think about the similarity judgment

between brand i and brand j, and call it d;. The optimally rescaled data will be called d; while the

predicted rescaled data, that is predicted from the distance model, will be called &;j As before we

will be using Alternating Least Squares. The perceptual space reveals the aspects of the brands
that the consumer considers salient when looking at those brands. The steps in the algorithm are

Step 0. Initialize d; =d;.
Step 1. Fit the distance modela; to the dz

Step 2. Optimally rescale the d; to the &:‘J honoring the order of thed;.

Step 3. Quit if done or go back to Step 1.

As before, in Step 2 we will be minimizing STRESS. However, at this point it would be wise to
look at the distance model used in Step 1. We will be modeling the proximities as distances,

a: =" Z(Xim _ij)2 N (144)

Some of you may remember this equation from a high school geometry course. It is the Euclidean
distance between points i and j in a space of r dimensions. The parameter x,, represents the
coordinate for brand i on the m™ dimension. Assuming that r = 2, we might look at a graph of the
situation:
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In the case pictured, the distance between i and j is V2.

The flexibility of MDS can hardly be overstated. There are at least three categories of methods
that allow us to capture similarity or proximity:

Direct
Ask for pairwise ratings or rankings
Have respondents sort objects into categories
Pick the pair of pairs most similar (Method of tetrads)
For each member of a trio, indicate which other brand it is most similar to (Method of
triads)

Attribute Based
Calculate correlations over measures
Calculate distances over measures

Behavioral
Traffic volume, phone calls, trade or migration between two cities, regions, etc.
Switching proportions between brands
Confusability
Cross elasticities
Percent agreement, Chi Square, other measures of association

14.3 Other Distance Models

In addition to the classic Euclidean formula, other formulae qualify as distances, which are also
called metrics. More accurately, we might use the word metric. Four axioms must be satisfied for
a set of numbers to qualify as a metric:

Identity d;=0, (14.5)
Non-negativity du >0, (14.6)
Symmetry d; =d;,and (14.7)
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Triangle inequality d+ X d;, . (14.8)

]

Of course the already noted classic Euclidean Distance equation,

&; = 2(){im —xjm)2 s

satisfies all four requirements. But other distance models are possible. For example, there is a
very flexible formula called the Generalized Minkowski Metric in which

1/a
d; = [E Xim = Xjm |a} . (14.9)

When a = 2 you get the classic Euclidean formula. When a =1 you get a metric known as the City
Block Metric. This is the distance between two places where all angles have to be 90° and the
triangle inequality holds as an equality. This metric is often used when the objects being scaled
are perceptually decomposable. As a — o you get the supremum metric in which respondents
only notice the biggest difference.

14.4 Individual Differences in Perception

Up to this point in this chapter, we have been looking at two way single mode data. What this
means is that we have a data matrix with rows and columns and thus it is said to be two way data.
There is just a single mode, however, since both ways of the matrix are indexed by brands. Now
we will look at what happens when we have three way data representing two modes. The second
mode will be individual subjects. A diagram for this sort of data is given below:

Typical element:
_.-="777 Consumer i rating
4 brands j and k
d
Brands
e /

Brands

L

Repondents

A typical element in the dataset would be dgif, the similarity judgment for brands j and k made by

subject i. If the numbers from each matrix are not comparable, as they would be if each subject
was engaging in rank-ordering, the data are called matrix conditional.
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Data such as these can be analyzed using the Weighted Euclidean Model, also known as the
INDSCAL model (INDividual Differences SCALing). That model is given now:

1/2
dg {Zwim(xjm - ka)z} : (14.10)

with the added element of the weights, the w, , which represent the importance placed on
dimension m by individual i. The coordinates, the xj, are still coordinates in this model but they
are the coordinates of the brand in the group space. Each individual has their own coordinates
which create a Euclidean space in which the axes have been stretched or shrunk. The coordinate
for individual 1 would be

Yo =X Wi (14.11)
so that
r 1/2
i {Z(yﬁ;ﬁ - yﬁ;)z} (14.12)

using these “customized” coordinates. A diagram of how all this looks appears below:

A B C Subject 1
Subject 2
D o F | _—»
G H I
Group Space Subject Weights
A B C
A C
D E F D E
G I
G H C
Subject 1’s Space Subject 2’s Space

Subject 1, who has a high weight for dimension 2 and a very small weight for dimension 1 has a
space where brands that are separated on the second dimension are very dissimilar, but brands
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whose only difference lies along dimension 1 (for example, brands A, D and G), seem quite
similar to this person. Subject 2 has the opposite pattern.

The INDSCAL model can be conveniently represented in matrix notation. Place the coordinates
for brand j in the vector

X, e xjr].

Here, the dot subscript reduction operator on the symbol x| comes from Equation (1.2), and

basically is used to hold the place of the second subscript, the one for the dimensions. We also put
the subject weights on the diagonal of the matrix W as

w, 0 - 0
0 w, = 0

W =
| 0 0 W,

Then the INDSCAL model is
a9 =[x wox, ]2

and the original, unweighted Euclidean model is a special case where W(i) =1 for all i, or in other
words, where

A

L 1/2
djk—[xj,xk,] .

14.5 Preference Models: The Vector Model

In this model, we will be representing not just which brands are similar to which others, but which
brands the consumers like the best. The vector model can be estimated from a variety of data
types, but here we will assume that we have similarity judgments and preferences rankings or
ratings.

In the Vector model, the brands are represented as points in the perceptual space, as before. Each
brand has a set of coordinates on the r dimensions in the perceptual space,

X'-z[xn Xip 0 Xjm "7 Xir]'

But now, each subject is also represented in the space, by a vector. The projection of the brand on
that vector determines the preference for it. The situation is illustrated below:
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Subject i

Subject i’

Subject i prefers Brand A to Brand B, as the projection for A exceeds the value for B on that
subjects preference vector. Subject i’, on the other hand, prefers B to A as that person’s
projections line up in the opposite order. Note that the projections of the brands onto each of the
subject vectors occur at right angles to those subject vectors. It is instructive to look at
isopreference contours for a particular subject. A subject will be indifferent between any two
brands sitting on the same isopreference contour since both have equal appeal. These contours are
graphed below:
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According to the model, our Subject i would be completely indifferent between any brands that
would appear on the same dashed line. However, the subject would prefer a brand on a line
farther from the origin to one on a line closer in.

In order to express these ideas mathematically, we need to be able to identify each consumer’s

vector. It will be convenient to pick a point on the vector at a distance of 1 unit from the origin.
Doing so, we then have

Yi=lya Yo o Ym v Vi)

and since the distance from this point to the origin is 1, we have

VYLY. =1/2yfm =1.
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The preference of person i for brand j, which is the projection of the brand’s point onto the
subject's preference vector so as to create a 90" angle with that vector, is given by

r
ZYiijm
- m
S = 1/2
r
2
m

but since the denominator is 1, we have simply
S =zyimxjm =YiX;. (14.13)

The vector model holds for many different product attributes. For example, for price, less is
always better. For miles per gallon, more is preferred to less. But there are some product
attributes for which the vector model makes ridiculous predictions. For example, it is quite
possible that I would like a car that is larger than a sub-compact. But does this mean I would
always want a larger and larger car? The vector model predicts that I would prefer a 2 mile long
car to a sub-compact. This brings to mind the story of the porridge, which might be too hot, it
might be too cold, or it might be perfect. To model perceptual attributes that act like this requires
that we turn to the notion of an ideal point.

14.6 Preference Models: The Ideal Point Model

In the vector model, we represent individuals as a direction in the perceptual space. In the ideal
point model, individuals, as well as brands, become points. In that sense we have a joint space.
The situation is illustrated below with a one dimensional joint space.

Subjects

N

We have picked two hypothetical respondents: i and i’. In the ideal point model, the closer a brand
is to you, the more you like it. Thus i has the preference sequence: A-B-C-D while i’ prefers the
brands in the following order: C-B-D-A. If the dimension were like a string, the preference of
subject i’ could be determined by picking up that string at his or her ideal point:
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In fact, using this technique we actually perform the opposite mathematical operation. Given a set
of consumers' preference rankings, we unfold the string, or more generally the r-dimensional
space, to deduce the underlying position of the brands and the individuals’ ideal points. In fact,
this technique is sometimes known as unfolding. Looking at a two dimensional space, we can see
the isopreference contours for the unfolding model:

Again, the subject whose ideal point is located at the center of those concentric circles, will be
indifferent between any pair of brands appearing on the same circle. A brand on an inner circle
will be preferred to a brand on a more outer circle.

There are two ways of collecting data for this model, and in fact for the vector model described
above. You can collect internal data, which means that each individual rates or ranks their
preference towards each brand, or you can combine that with perceptual ratings or rankings of the
similarity of the brands. The situation is represented by the data matrix below.

I\

Feoph

[ Ineei Uniolding
[] Ecemd Unbidiag
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Here we placed people and brands in the same lower triangular matrix. Internal unfolding utilizes
just the people x brands rectangular part of this matrix, while external unfolding adds the brand x
brand information.

The ideal point model is a distance model, so the formula for the preference of subject i for brand j
is just the distance between subject i’s ideal point and brand j’s position in the joint space,

1/2
T
A 2
Sjj _|:Z(Yim ~Xim }
m

(14.14)
=[x -xp)”

We can use metric or alternating least squares versions of this technique, and it is possible to have
a version where there are individual differences in perception of the joint space, as we had with the
INDSCAL model.
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Chapter 15: Stochastic Choice

Prerequisites: Chapter 5, Sections 3.9, 3.10

15.1 Key Terminology

The topic of this chapter is a set of choice models that deal with consumer behavior over time. We
will begin by looking at data that tabulates what consumers do on two sequential purchase
occasions. Do they buy the same brand twice, or do they switch from one brand to another? Later
in the chapter we will look at the number of times a particular brand has been purchased, a type of
data often called purchase-incidence data.

In some cases, we will assume that the population being studied is homogeneous. This is
tantamount to the Gauss-Markov assumption [presented in Equation (5.16)] that we typically
make in the general linear model, that is, that each observation can be described by the same
parameter. In other cases, we may assume that the population being studied is heterogeneous with
that parameter taking on different values. The parameter may itself follow some sort of
distribution, often called a mixing distribution.

There is a different sort of homogeneity-heterogeneity distinction that comes up in models dealing
with data collected over time. Regardless as to whether each unit, browser, consumer or
household in the population can be described by the same parameter, is it possible that the
parameter can change over time? A parameter that remains invariant across time periods is
generally referred to as being stationary rather than homogeneous. More formally, we would
define stationarity for a parameter 0 such that

0,=0,=0forallt,t' =1,2, -, T. (15.1)

That terminology out of the way, let us now turn to the brand switching matrix which contains the
key raw data for the models of the next few sections.

15.2 The Brand Switching Matrix

In what follows we will assume that we have three brands; call them A, B and C. Of course this
terminology should not obscure the generality of the type of data we will be discussing. The three
brands might actually be three Web sites, for example. In any case, in this section for each
household we will be looking at a series of observations across T time periods: y,, ¥,, =, ¥ =" Y1
We might admit here that the y, values should also have a subscript for household, but that is
dropped for notational convenience. You can think of the value y, as being randomly selected
from some population of households. For now we will look at T = 2 purchase occasions and
organize the data from these two occasions in a two way contingency table that might look a lot
like the one below:

Purchase Occasion Two

A B C
Purchase A 10 5 10 25
Occasion B 8 12 5 25
One C 10 10 30 50

The table tells us that, for example, 10 households bought brand A on week one and then bought it
again on week 2. On the other hand, of the 25 households who bought brand A on week one, 5 of
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them switched to brand B on the second purchase occasion. It will be useful to be clear on
different sorts of probabilities that can be formed from raw data such as these. An example of a
joint probability would be the probability that a household in the sample bought A on week
(occasion) one and then B on week 2, in other words Pr(y, = A and y, = B). We can also write
this as Pr(A, B). Making the notation a bit more general, let us define Pr(j, k) as the joint
probability that brand j is chosen on the first occasion and k on the second. From the table we can
see that Pr(A, B) = 5/100 since 5 families from the sample of 100 families did just that.

A marginal probability gives the summary of a row or a column. For example, what is the
probability of buying brand A on week one? The answer is 25/100, as 25 out of 100 families did
that, and that figure also happens to be the market share for brand A on week one. As such we

might use the letter m and notate that value m')’. Alternatively we could also use an expression
like Pr(A), where it is understood we are talking about week one.

Finally, a conditional probability involves subsetting the table in some way. A conditional
probability looks at the odds of something happening within that subset of the table. We might
ask, given that a family bought A on week one, what is the conditional probability that they would
turn around and buy B on week two? In other words, what is Pr(y, =B | y, = A)? A vertical bar is
traditionally used to indicate a conditional probability. Here the numerator differs from the joint
probability. You can think of this as the probability of B conditional on A, or given A. In either
case, Pr(B | A) = 5/25, as there are 25 families who bought brand A on week one, and of these, 5
bought B on the next occasion. Again we could make the notation a bit more general by referring
to Pr(k | j), or py, as the conditional probability that brand k is chosen on the next occasion given
that j was chosen on the previous occasion. While the notation py will be used to refer to Pr(k | j),
this probability is actually in position j, k of the transition matrix, illustrated below.

We might note that
m) = ZPr( i,k), (15.2)
k
pr(k | ) = 20K o that (15.3)
Pr(j)
D Pr(k | j)=1. (15.4)
k

In all three cases above the summation over the index k is taken to mean over all J brands in the
study that appear in the switching matrix. Here the value m} is the share for brand j on week 1.

15.3 The Zero-Order Homogeneous Bernoulli Model

In this section we will once again be looking exactly two purchase occasions, i. e. T = 2. We
begin by contemplating exactly two brands, A and B, and we will look at this situation with a
particularly simple model. The zero-order homogeneous Bernoulli model assumes that on any
purchase occasion the probability that A is bought is p. Here are the joint probabilities:
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Occasion Two

A B
Occasion A pz p(l-p)
One B (I-pp (1-p)

For example, looking at the joint probability Pr(A, A), according to the model we have two
independent events, each one occurring with a probability of p. The probability of two
independent events can be calculated by multiplication. That the two events are independent is
one of the strongest assumptions of the model. In effect, it assumes no feedback from one
purchase event to the next. In other words, this model is zero-order just like a series of coin flips.
Recall that with a fair coin, regardless of how many heads in a row have come up, the probability
of a head on the next toss is still exactly .5.

The joint probability of any string of purchases can be calculated from multiplication as in
Pr(A, B, A, A,B, ) =p-(IL-p)-p-p(l-p)

The probability of r purchases of A out of T occasions would be

T r T-r
(Jp (1-p) (15.5)

. T o . . .
where the notation ( ]refers to the number of combinations of T things taken r at a time and is
r

T, T
r _r!(T—r)!

and T!'=T-(T-1)- (T-2)-- 1. The conditional probabilities can also be displayed in the same
occasion-by-occasion format. When displayed as below, the table is called a transition matrix.

given by

Occasion Two

A B
Occasion A p (1-p)
One B »p 1-p)

The elements of the transition matrix, for example Pr(k | j), the probability that k is chosen given
that j was chosen previously, are notated p since that conditional probability arises from row j
and column k.

15.4 Population Heterogeneity and The Zero-Order Bernoulli Model

Lets say that the value of p is itself a random variable, rather than a fixed parameter that describes
the population of households, but there is still no feedback from one occasion to the next. On the
surface it seems that this should imply, just as in a series of coin flips, that the next flip should not
depend on what happens in any previous flips, right? It turns out the population heterogeneity and
the lack of stationarity over time have similar implications in switching data. To get a handle on
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the nature of the heterogeneity of the value of p, we typically use the Beta distribution (Lilien and
Kotler 1983), where

Pr(p) = ¢,p*" (1-p)™ (15.6)

The constant c, is a place holder that needs to be there to make sure that the distribution integrates
to 1, i. e. it must be the case that

TPr(p)dp =1

because Pr(p) is a density function (see Section 4.2). The two parameters of this distribution, o
and B, control the shape of it. As compared to the normal, a wide variety of shapes are possible!
Some idealized examples are pictured below in a graph that shows the Pr(p) on each of the y-axes:

B=

._.
=
Il
N

AR
> S

Given some value of p, the likelihood of r purchases out of T occasions (Lilien and Kotler 1983) is

Pr(r, T|p)=c,p (1-p) ™" (15.7)

T
The constant c, is a place holder for( J, which does not figure into the derivation that follows.
r

At this time it is appropriate to invoke the name of the Reverend Thomas Bayes, given that his
name is attached to a simple theorem that connects two different sorts of conditional probabilities.
For any two events, a and b, we know that by definition

Pr(a,b)

Pr(a|b) = Pr(b)

but also that
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Pr(b|a) :%ﬁ).

This suggests that there are two ways to write Pr(a, b),
Pr(a, b) = Pr(a |b) - Pr(b) = Pr(b | ) - Pr(a),
which, when set equal to each other yields

Pr(a|b)-Pr(b) =Pr(b|a)-Pr(a)

Pr(a|b) = %.

From his theorem we can deduce that

Pr(r, T | p) Pr(p) .

Prip[r.T) = Pr(r, T)

(15.8)

In the numerator of the right hand side we see the likelihood of the data given the model from
Equation (15.7), i.e. Pr(r, T | p). The density for p, assumed to be beta distributed, is also in the
numerator. This is usually called the prior distribution, or sometimes just the priors. The left
hand side also has a name, the posterior probability. It is the posterior probability of choice on the
next occasion given a history of r purchases out of T occasions. If we define c, as 1/ Pr(r, n),
then the posterior probability can be rewritten as

Pr(p|r,T) =c; - Pr(r, T |p)-Pr(p)
(15.9)
=c, -p'(1-p)"" - p*(1-p)*

which means that the posterior probability looks like a beta distribution with parameters o* = o +
rand f* = B+ T -r. The upshot is that even though there is no memory or purchase feedback in
this model, the posterior probability makes it look like there is. But the reason for this is that the
population is not homogeneous. If we collect up all the households for which no one bought A,
we probably have a group for whom p is lower than average. Dividing the sample of households
in this way makes it look like there is contagion - a bunch of B's in a row lead to a higher
probability of another B, not another flip of the coin.

We can estimate the choice parameter, p, using (Lilien and Kotler 1983)

a+r

p=E(p|r,T)=————.
p=E(p]| )a+B+T

(15.10)

For example, for T = 3 we could look at eight possible triples that could occur with two brands
and three weeks; AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB. The value of r is 0 for triple
BBB. According to the model, the prediction for all those with three purchases of Brand B in a
row would be
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A o
=E(p|0,3)=———.
p=E(p|0,3) wipi3

Forr=1 and T = 3 we could have ABB, BAB and BBA. All three sequences lead to the same
estimate on trial 4,

A o+1
=E(p|L,3)=——
p=E(p|L3) wip3

As you can see, we can derive values for the choice probabilities, that is, values of p, on week 4.
These probabilities arise from the more fundamental parameters that underlie the distribution of p,
namely o and B, which are the unknowns and as such must be estimated from the sample. We
could certainly minimize Pearson Chi Square across the eight data points from the triples.
According to Minimum Pearson Chi Square, we pick values of a and 3 in such a way as to make

(=P’
=2 Jﬁ'l (15.11)
J J

as small as possible. We could also use modified minimum Chi Square or Maximum Likelihood.
To do any of these we would need to determine the derivates of the objective function and drive
them to zero,

oy’ o’

oa B

>

using the methods described in Section 3.9. As there are eight triplets from three weeks worth of
purchases, and two unknowns, the model can be tested against Chi Square on 6 degrees of
freedom.

15.5 Markov Chains

Now we will look at models that assume homogeneity across consumers or households, but not
zero memory. In fact, a defining aspect of a Markov chain is that the system has memory that
goes back one time period. If we define y, as the brand chosen on occasion t, this memory can be
described as

Pr(y,=J | Yeis Yeor 5 Yo) = Pr(y, =J | y0)- (15.12)
We also assume stationarity which can be interpreted as the statement below:
Pr(y, =j |y ) =Pr(y, =iy 1)
forall t, t' and j.

A Markov chain is characterized by a transition matrix and an initial state vector. The transition
matrix consists of the conditional probabilities Pr(k | j) such that ZPr(k| =1 A sample
k

transition matrix is presented below:
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Occasion t + 1

A B
. i 3
Occasion t B s s

For example, in the lower left hand corner we see Pr(A | B) which is element 2,1 (p,,) in the table
and is equal to .5. The second characterizing feature of a Markov chain is the initial vector which

represents the market shares at time zero. A typical element would be {mﬁo)} which is the market

share for brand j at time 0. In that case we can define the J by 1 vector of shares as

(0)

m® =[m® m - m]

Given a transition matrix and an initial state, we can now predict the market shares for any time
period. For example, looking at brand k, we might ask what will the share of brand k be after one
week. To do this, we can use the Law of Total Probability. After time O there are J things that
could have happened, that is to say there are J ways for k to be picked at time 1. A purchaser of
brand 1 could have switched to k, a purchaser of brand 2 could have switched to k, and so forth
until we reach the last brand, brand J. This is illustrated below:

m{” =Pr(k[1)-m!® +Pr(k|2)-m{” +---+Pr(k | J)-m{”
H_J

T Pr (bought 1 previously)

Pr (buy k given
previous purchase
of brand 1)

We can use a slightly more elegant notation to say the same thing as
J
M _ ©)
my’ = Zp M
i

Here note that the law of total probability has us running down the rows of the P matrix, that is,
running through all the ways that event k can happen at time t + 1. We can also express all of the
market shares at one time using linear algebra,

[m®"]) =[m®]P
(m®] =[m"P=[m"] =[m®]PP

m®] =[m?]P=[m"] =[m”]PPP

m®] =[m®7P". (15.13)

We frequently assume an equilibrium such that the share vector no longer changes and estimate
the elements of P from panel data. These elements themselves may be modeled with a smaller
number of parameters that reflect the fundamental marketing concepts that are driving the data.
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Recall that in the zero-order homogeneous Bernoulli model the transition matrix took on the
appearance:

-

p 1-p

Here remember that the rows represent the state of the market at time t while the columns are the
states at time t + 1. Element p,, is the conditional probability, Pr(k | ).

Something we might call the Superior-Inferior model has a transition matrix

o)
p 1-pJ
No one who ever tries the first brand goes back to the second. One of the two states is an

absorbing state - eventually the whole market will end up there.

In the Variety-Seeking model the propensity to buy a brand again is reduced by some fraction v:

"7 an
- (=-p)-vd-p)

J
You will note that since Zp i« =1, we can figure out one column by subtraction. Also note what
k

happens as v goes from 0 to 1. The closer v gets to 0, the closer the model resembles the
Bernoulli.

How would we estimate the parameters v and p? We could look at the 8 triples that are possible,

AAA, AAB, -, BBB. Each one has a prediction from the model. For example, for AAA we
would have

Pr(AAA) = (p—vp)’.
We would have 8 data points, and two unknowns, and we could just use Minimum Pearson Chi
Square, Maximum Likelihood, or other methods as described in Section 12.4 as well as for the

logit model in Sections 13.3 and 13.4.

15.6 Learning Models

The models of this section are part of Linear Operator Theory, which was originally applied in
Marketing to learning about frozen orange juice by Kuehn. Here we are going to assume that we
have but one brand of interest, that is either purchased or not:

_ |1 if thebrand ofinterestis bought at time t
Y= 0 if thebrand of interestis not bought at time t

If our brand is purchased at time t - 1, we apply the acceptance operator and presumably learning
occurs:
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p= o+ By pyy
while on the other hand, if the brand is rejected, we apply the rejection operator:
P=0, T B, Py
Consider what happens when a loyal consumer repeatedly buys our brand,
P =04 B p

p>= oy + By [a; + B,pol

or working recursively backwards from time t
p.=0o; B py
p.=o, B [o, + B pel
p.= o, +Bfo, + B, (o, + By ps)]
Now, multiplying out this last version we have
p. =, +Bo, +Bia, +Bip s
Eventually, we note that a pattern emerges so that we have

p.=a, +Bo, +13120‘1 +B?0‘1 +[3?0L1 L
(15.14)

= oy [1+B, +B7 + B+

The term in the brackets is an infinite series, but that does not mean that it is equal to infinity. Call
itb

b=1+B, +B; +B} +--
(15.15)

=D Bl

i=0

For Equation (15.15) to work requires that0 <3, <1. If we multiply Equation (15.15) by B, we
get

Bb =P, +Pi +B) +-- (15.16)
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Subtract Equation (15.16) from Equation (15.15) above and the difference is 1:
b-B,'b =1

b(l-B)=1

b=— . (15.17)

Combining Equation (15.14) and Equation (15.17), we can conclude that if the brand is always
purchased, the probability will approach

P =——, (15.18)

a phenomenon known as incomplete habit formation. In this Linear Operator Theory, if §, =, =
0 then we end up with a transition matrix just like the one shown below:

a, l-o
a, l-a,
which is a zero-order Bernoulli model!

15.7 Purchase Incidence

The main exemplar of a purchase-incidence model uses the Negative Binomial Distribution or
NBD. In order to lead into that, however, we will start with two simpler models, the first of which
is the binomial, named after the terms in the expansion of

(q+ p)T

with =1 - p. Term number r + 1 is q' " p" which we have already seen used in the expression for
the probability of T things taken r at a time in Equations (15.5) and (15.7):

T -
( jpr(l—p) '
T

T
The term [ jgives the number of ways out T to have r "successes" whilep”(I1—-p)' "is the
r

probability of each one of those ways. Now, consider a table from a panel of n households, with
each household being categorized in terms of how many purchases of our brand that they have
executed during the T week study period:

r Number of Households
f0
1 f,
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Total n

with a typical entry being f, which gives the number of households with r purchases during the
study period. These are the data that we will attempt to account for with the model. The binomial
model states simply that the probability of a purchase by any household on any week is p. We can
estimate p using a particularly simple method called the method of moments. It is the case that

X=E(r)=pT (15.19)

gives the average number of purchases across households, or in other words, the average number
of purchases per household. Solving for p we have simply

| =l

p:

For example, if the average household purchase 2 items out of 4 occasions, then p = 2/4 = .5.
According to the binomial model, we could substitute .5 for p in the formula

. T .
f =T.[ j(l—p) o (15.20)
r

We could test the model with a Chi Square that compares the predicted and observed frequencies
of households with 1, 2, -, T purchases.

The Poisson model arises from the Binomial by letting T — oo and p — 0 but holding Tp = A.
The model originated from studies of the deaths of Prussian soldiers from kicks to the head by
horses, apparently a worrisome occupational hazard. The number of Army corps with one death,
two deaths, and so forth, was tabulated. The Poisson model asserts that

Y

f =n-e .
r!

T

(15.21)

Fortunately for Prussian soldiers, the Poisson, which means fish in French but is actually named
after it's inventor, is considered a distribution for "rare" events. The model assumes that there are
a large number of small time periods with a small, but constant purchase probability in any time
period. This is no doubt more realistic than the Binomial model, but unfortunately the Poisson
makes an odd prediction about the probability that t time periods pass between one purchase
occasion and the next

Pr(t) = Ae™ (15.22)
which is a special case of the exponential distribution. That this assumption is not in keeping with

the reality of shopping can be seen in the graph below that looks at the relationship between time
elapsed and the probability of a purchase:
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Pr(Purchase)
40

30

20 -

10 F

.00

Time Since Last Purchase

The Poisson has the interesting property that its mean is equal to its variance,

E(r)=Xx=A
V(r)=s’>=A.

We could easily use the Method of Moments to estimate A, and of course we also have at our

disposal Minimum Xz’ which would require that we compare the f, and fr values, Maximum
Likelihood, and so forth.

15.8 The Negative Binomial Distribution Model

The NBD model is named from the terms in the expansion of (q - p)”. The distribution can arise
in a number of ways. For example, it could represent the probability that T trials will be needed
for r successes. In effect, it is a binomial where the number of coin tosses is itself the random
outcome. It could also represent a Poisson distribution with a contagion process such that the
Poisson parameter A changes over time. Another possible mechanism that leads to the NBD is
where we have a Poisson model but the A values is distributed across households according to the
gamma distribution. The gamma is part of the general family of distributions that includes the Chi
Square as a special case. According to the NBD model, the number of households purchasing the
brand under study is

k m
ﬁ:n-( k ]( m j Tk+r) (15.23)
k+m) \k+m rr

The gamma function, I'(*), not to be confused with the gamma distribution, acts like a factorial
operator (the ! symbol) for non-integral arguments. For integral q, I'(q) =(q + 1)!. In general,

() = J'X‘He**dx. (15.24)
0

Here we might note certain similarities between the Binomial model in Equation (15.20) and the
Negative Binomial in Equation (15.23). In the latter, the role of p is played by k/(k + m) while 1-
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p is analogous to m/(k + m). As before, we will be estimating k and m according to the method of
moments, or using ML or Minimum Chi Square.

Here we might note certain similarities between the Binomial model in Equation (15.20) and the
Negative Binomial in Equation (15.23). In the latter, the role of p is played by k/(k + m) while 1 -
p is analogous to m/(k+m). As before, we will be estimating k and m according to the method
of moments, or using ML or Minimum Chi Square.
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Section V: Economics and Econometrics
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Chapter 16: Microeconomics
Prerequisites: Chapter 5

16.1 The Notion of Elasticity

In this section we will be making four key assumptions about demand for products and services.

(1) Consumers maximize utility,

(2) Consumers have full knowledge of all relevant market conditions,
(3) Sellers maximize short-term profit and

(4) Demand is infinitely divisible.

Imagine that we are looking at the relationship between price and quantity demanded. In the
figure below, we have highlighted two price points, p, and p,, and the two corresponding demand
points.

p

Il)z | pi
The elasticity represents the percentage change in the quantity demanded, which is represented on
the y axis of the graph above, divided by the percentage change in the price demanded, which
shows up on the x axis. We will be using the symbol e to refer to the elasticity. In that case we
have

e U~/ _Ad/q_Aq g
P —P./Pr Ap/p Ap p

If we assume that Aq and Ap can be made arbitrarily small, meaning that price and demand are
both infinitely divisible, we can the take the following step

A
-2

_ q
Ap p

_da.9 (16.1)
dp p

where dg/dp is the derivative of q with respect to p. By time honored tradition, if -1 < e < 0 we
say that the demand is inelastic. On the other hand, if e <-1 we say that demand is elastic.

In Chapter 5 we studied the linear model which in this context would be
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q; =Byt pi By (16.2)

Dropping the subscript i, and since dq/dp = B, (if you wish you can review Section 3.2), obviously
under the linear model in Equation (16.2) it is then the case that

ezBIB.
q

Continuing to assume that the model of Equation (16.2) holds, we can now substitute 3, + p3, for
q to give us

= —p .
°=Pi By +pB,

A linear demand function creates a situation in which the elasticity depends on p. Now lets try (as
we did in Section 7.6) a quadratic function,

q; =B, +p;B, +pi2[32'

Then, again dropping the subscript i, dq/dp = B, + 2pB, and therefore, according to Equation (16.1)
we have

e= (B, +2pB,) 2.
q
OK, now we are ready for the Cobb-Douglas function that models demand as

4, =B,p" or (163)
In q;=InB, + B,Inp. (16.4)

Note that while the model is nonlinear, we can easily estimate it using OLS because it can be
linearized by taking the log of the independent and dependent variables. When we estimate
Equation (16.4) we get the same value of interest, 3,, that we see in Equation (16.3). The
derivative is

d -1
A, BlBopBI
dp

so that

€= BIBOPBI_l B

Again, we see q in the equation so we substitute the model in Equation (16.3) to get

_ Blﬁopﬁl_lpl .

Bop[3 !

(&
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Note that p has been written as p1 just so that we can use the rule of Equation (3.7) and end up

with pB‘ in the numerator. Everything cancels, except for a single term and we have, for the
Cobb-Douglas function,

e=p, (16.5)

which shows us that the Cobb-Douglas is a constant elasticity model, meaning that the elasticity
stays the same all along the x-axis of price.

16.2 Optimizing the Pricing Decision

In this section we are not going to assume either the Cobb-Douglas function of Equation (16.3) or
any other particular demand function. Instead, we leave it that sales are a function of price, i.e. q
= f(p). But we are not optimizing demand, we are interested in optimizing profit which requires
that we take costs into account. Lets say that costs are a function of quantity demanded, i. e. ¢ =
g(q). In summary, we wish to make

p = revenue - cost = pq - g(q) (16.6)

as large as possible. The breakeven point occurs when

pq=g(q)
p EQ
q

as revenue is equal to cost at that point. But we don't want to just break even, instead we want
dp/p = 0 as this would be the point at which the function is at an extreme point. We have

dp_dp-q ds@ g
dp dp dp

since the sum of the derivatives are equal to the derivative of the sum [Equation (3.12)]. When the
above equation is at zero,

dp-q _ dg(q)
dp dp

Rewriting the Equation (16.6), we see that

p = p-f(p) - g[f(p)]

meaning that according to the chain rule [Equation (3.14)] the derivative is

d%p f(p)—glf(p)]=f'(p) - gTf(P)]-f'(p) .
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Chapter 17: Econometrics
Prerequisites: Chapter 6, Sections 3.5 - 3.8

17.1 The Problems with Nonrecursive Systems

This chapter contains a mixture of ideas extended from the Chapters on Regression, in particular
Chapter 5 and 6, and the chapters on covariance structure, in particular 9 and 10. To anticipate a
theme of this chapter, econometricians have come up with a variety of ways to use the basic least
squares philosophy to look at models with latent variables and complex causal structures. In this
section we are concerned with nonrecursive systems, with equations of the formy = By + I'x + (,
where V() is not diagonal, or it is impossible to arrange the sequence of y variables such that B is
lower triangular. To illustrate the problems caused by nonrecursion, we start with a deceptively
simple two equation system:

Y =Bny, +§
(17.1)

Yo =Xy,

where y, represents the expenditures on our product category, y, is income, and x, is all other
expenditures, including savings. As we did in Chapter 10, we are dropping any subscript that
references the individual observation in this section. However, the reader should keep in mind
that £, is a random input to the model, and varies from one observation to the next. The second
equation is known as an identity, since there is no error term. If we were to assume that V(§)) =
GZI, can we use the OLS approach of Chapter 5? Unfortunately not, since problems arise due to
the covariance between y, and ;. This becomes clear when we substitute the y, equation into the
y, identity:

Yo =By, +8)+x

Y2 —Buny, =§, +x,

¢, X
y, = + ) (17.2)
’ I_Blz 1_[312

If we assume that E(,) = 0 then we can say

E(y,) = —2 (17.3)

which means, by the definition of variance [Equation (4.7)], we get:

Cov(&,,y,) = E{[¢—E@)lly, —E(y,)]}

= E{CI[YZ -E(y,)] }
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where we get to the second line above since E({,) = 0. Now, substituting the results of Equation
(17.2) and Equation (17.3) into the line above, we get

Cov«;l,yz):E{cl[l_’;ﬁ3 H

Thus, y,, which functions as an independent variable in the equation for y,, is correlated with the

error for that equation, £;. This is a no-no. In this situation the usual least squares estimator ﬁis
not consistent [consistency is defined in Equation (5.11), but see Johnson p 281-2 for a proof].

There are three solutions to this problem. First, there is what econometricians call Full
Information Maximum Likelihood which is basically the covariance structure model covered in
Chapter 10. Estimating a nonrecursive system using coviarance structural models can be tricky
however. Second, there is what is known as Indirect Least Squares which takes advantage of
reduced form, covered elsewhere [Equation (10.6)]:

y=By+Tx+(

y-By=Tx+(

(I-B)y=Tx+¢
y=(@-B) Tx+(I-B) ¢

y=Gx+e

We can use OLS to estimate the elements in G. The major problem here is that unless the model is
just identified, with exactly the right number of unknowns, you cannot recover the structural
parameters of theoretical importance in B and I".

Third, there is a technique called Two Stage Least Squares and we will now cover that.

17.2 Two Stage Least Squares

The basic strategy of Two Stage Least Squares, sometimes called 2SLS, is to replace y, with y, in
Equation (17.1) above. To discuss the technique further, we need to revert to the notational
convention of Chapters 5, 6 and 8 which explicitly makes reference to individual observations.
Rather than refer to a particular endogenous variable as y,, lets say, it is now a particular column
of the Y matrix which has n rows, one row for each observation. To get the discussion started, we
introduce some key vectors and matrices:

Array  Order Description
v, n-l Endogeneous variable of interest
Y, n- (p-1) Other endogenous variables in the equation for y
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B, (p-1)-1 Structural parameters for Y,

X, n-k, Exogenous variables in equation fory
Y K, -1 Structural parameters for X,
. n-1 Error in the equation for y,,

The model looks like

v.=Y,B, + XB,+ C,

Now we define the full set of exogenous variables as X =[X, | X,]. . In stage 1 we regress Y,
on X to produce:

Y, = X(X'X)"'X'Y,.

In stage 2 we regress y., on SA(Z and X,. This produces a formula for the unknowns as below:

N < ’ > [y ’ -1 > ’
{BHYYYX} {Yzy.l}
S '~ st Yo |
v XY, 1 XiX, X1y
While Y, may be correlated with ., we expect that \A{z is not. It is not literally necessary to
execute two stage least squares in two stages. Instead you can use

XY, | XX,

{fs‘z} ~ {YQ’X(X’X)' XY, | ViX, }1 {YQ’X(X'X)' Xy_l}
¥
or define Y, = Yz + E, so that

YY, =YI(Y,-E,) =YY, = Y,X(X'X)' XY,

Now rewriting,

{s} {Y;Yz ~kEE, 1Ygxl}l {(Yg —kEz)y.l}

For k = 0 we have OLS and for k = 1 we have 2SLS. There is a technique called Limited
Information Maximum Likelihood in which k is itself estimated.

17.3 Econometric Approaches to Measurement Error

We begin by noting that measurement error in the y vector is not a problem for regression.
Assume the real model is
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y=XB+e
where y is the true value of the dependent variable vector. Instead, unfortunately, we observe
y=y+9o
where 8, in general, is not a null vector. We can write the true model
y-0=Xp+e
y=Xp+e+0o,

so that we just get a slightly different error term. Unless Cov(3, X) # 0 we will be OK. Now,
however, lets contemplate what happens when there is measurement error on the x side. Imagine
that we have the true model

y = )NCB +e
but we observe
X=X+F (17.4)
instead. Rewriting the true model, we get
y= )N(B +e
=(X-F)p+e

=Xp-Fp+e

=XB+(e—Fp).

In this case we find out that the Cov(X, Fp) is not going to vanish since F is a component of X.
Thus the error and the independent variables are correlated and the OLS estimator is not
consistent. We can get around this problem using a technique called Instrumental Variables. We
need to find a set of instruments, X,;, that are independent of both the error vector e and the errors

in the X-variables, F. We then estimate § below such that
A ! -1 ’
B(i) = (X(i)x) X(i)y

andé(i) will then consistently estimate . From time to time we might use Z with 1's and -1's from

a median split of the x variables.
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17.4 Generalized Least Squares

GLS estimation has been discussed in Sections 6.8, 12.4 and 13.3. Here we review and further
develop the concept of GLS with an eye to applying it to data that are collected across time and so
cannot be considered independent. In the basic linear model,

y=XB +e,

C . . 2 .
in this section we will assume that e ~ N(0, o V) where in general, V # I. Regardless as to the
distribution of e, if we estimate

B=(XX)"XlYy,

we find that E(ﬁ) =B, but this estimator no longer produces the best, or smallest, variance, V(ﬁ).

Assuming that V is of full rank (see Section 3.7), V' exists and we can decompose it in the
manner of Equation 3.38) such that

V=PP.
Using P to premultiply the linear model, we get
Py = PXp + Pe or
y* = X*B + e*.
What are the properties of the new error term, e*? According to Theorem (4.9) we have
V(e*) = P[c V] P’
=G P[P'P] P’
and since V is of full rank, P is square and also of full rank so we can say that
V(e*)=c PP (P) P =cL

While we cannot believe in the Gauss-Markov assumption with e, we can with e*! Rather than
minimizing e’e as in OLS, we should minimize

e*'e* —eP'Pe=e'V e
instead. Doing so, we pick our objective function as
£ = ¢ = (y* X ) (y*-X*p)
= ¥ y* - 2y" X* B+ BX* X*B.

In order to minimize f, we should set of /9B = 0 and solve for B, as we will now do:
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A X p-axryr=0
B

B = (X X)Xy

and of course we end up with the usual formula, but using the transformed data matrices X* and
y*. Substituting back PX = X* and Py = y*, we have

B = (X* X¥) ' X¥ y*
=(X'P'PX)"'X'P'Py
=(X'V'X)"'X'V'y.

The variance of this estimator is
V)= (X'V'X)'X'V (6 V)VIX(X'V'X)!
=c’(X'V'X)™".

(n+1)

This is all fine and dandy, but since V contains unique elements, it is necessary that most

of them be known a priori. But there is another identification issue. Since V(e) = O'ZV, we cannot
uniquely identify both o and the elements of V. That this is so can be seen by simply multiplying
5 by some value a and then dividing all of the elements of V by a and the model is unchanged.
What we do is to set Tr(V) = Tr(I) = n.

. 2
We can estimate ¢ using

Error

where

SS o = (Y= XB)'V" (y - XP).
We can construct t-statistics that allow us to test hypotheses of the form
HO: Bi =0

. . . 2 A -l .
using the ith diagonal element of s (X'V X) in the denominator to create a t. One can also test
one degree of freedom hypotheses such as

af=c

using
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a'é—c

f=— P~
s’a'(X'V'X)'a

and for more complex hypotheses of the form
Hy:AB-¢=0
we use
SSy, =(AB-o)[AX'V'X) AT (AB-¢)

to construct an F ratio numerator (with degrees of freedom equal to the number of rows in A), with
2, . .
s in the denominator (with n - k degrees of freedom).

One area that we can apply GLS to occurs when the error in a regression model is not independent
because the data are collected over time, leading to autocorrelated error. This may happen if we
are analyzing the behavior of a particular firm, a particular store, category sales, purchases in a
particular geographic region, and in many other cases in marketing where we look at data not
collected across independent subjects. The next section speaks to that application of GLS.

17.5 Autocorrelated Error

When we collect data over time, rather than across a set of independent individuals, we run the
risk that the error from observations that are closer together in time will be more closely related
than a pair of errors that are farther apart from time. For example, looking at industry-wide sales
of motor homes, we may fail to include every possible exogenous factor that there could be in a
model for such sales. In fact, unless our model fits without error, it must be the case that we have
omitted some important independent variables. Now, if any of those independent variables that
did not find their way into our regression equation vary in a systematic way over time, for
example, the weather, or consumer confidence, then the errors in our regression equation will also
vary systematically over time. Of course, that would violate the Gauss-Markov assumption and
necessitate some counter measure. Such as GLS. To begin to sketch this out, consider
observation t on the dependent variable and the model for it,

Yy, =x.p+e, (17.5)

where, needless to say, x/, represents the t-th row of the matrix of independent variables, X.

Given the argument in the preceding paragraph, we note that values of e, are not independently
distributed, but rather, adjacent observations follow the model

e =pe, te&. (17.6)
In this context, the values g, represent an error for the error, if you will. We would also be remiss if

we did not point out that a requirement of the model is that |p| < 1. The distribution of the g, is
characterized as
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g ~ N(0, c°I), (17.7)

which is to say that the the g, unlike the e, are independently distributed. They behave like a
white noise process, in summary. Repeating our model for the error,

e, =pe,, +¢, (17.8)

we see that, since e, appears in the right hand side, the model for e_, would contain e, in it.
Making that obvious substitution, we get

€ = p(pet—z + St—z) +&;

= p[p(pet—3 +te ., )+ € 1+ &

At this point the pattern should be obvious. Continuing the process of substitution, we end up
with

€, =& +tpeg +p28t—2 +p381—3 L
(17.9)

©
i
= Zp €
i=0

This last equation will look quite familiar if you have looked at Equation (15.17) or (18.15), being
an infinite series. Now we wish to find out the expectation of the error. To determine the
expectation of e, from Equation (17.9), we keep in mind that the expectation of a sum is equal to
the sum of the expectations [Equation (4.4)], and that therefore

E(e,) - E{Zpe}

(17.10)

=Y B, =0,
i=0

since p is a constant parameter that describes the population and by assumption E(e;) = 0 for all i.

Now we wish to figure out the variance of e, that is V(e) = E[e, - E(et)]2 according to Equation
(4.7). Given that E(e,) = 0, which we have just shown in Equation (17.10), we will only need to

figure out E(e;). That will be made easier by recalling that all cross terms of the form E(e, €,

will vanish as the €, are presumed independent, and that a =1 for any value a. So, squaring the
second line of Equation (17.10) we have
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E(ef) =E(s}) +p *E(el ) +p* E(e],) + -
=c’+p’ct+pict+--
=(1+p° +p* +--)5’.

. . o . 2, 4 .
So in the above equation we have an infinite series of the form 1 +p +p + -, call it s such that

s=1+p>+p*+p*+--

pls=p’+p’+pt -

s—p’s=1
so that
s= ! (17.11)
e .
Putting all of this together, we conclude that
2 2 62
E(e;)=0; = > (17.12)
1-p

To explore the covariances between e, and e
between e and e, is given by

.j » we begin with j = 1. By definition, the covariance

E(e.e.,) =E[(e, +pe,, + pzat_2 +-)e, +pE, + pzsl_3 +--9].

Looking at the right hand side of that equation, we will factor the p that appears in the left
parentheses to give us

E(ee, ) = E{[e, +p(e,, +pe,s +-)](ecy +pErs +p 60y ++) }

Now, the two terms in the two parentheses on the right hand side are identical. We can write them
as a single term squared. What's more, you will notice an ¢ all alone on the left of the right hand
side. Its expectation is zero, and since there are no other values ¢, on the right hand side, the
covariance of it and every other term will be zero. It thus vanishes without a trace. Rewriting, that
gives us

E(etet—l) = pE[(gl—l +pE, + p281—3 + )2] (17.13)
You will note that since p is a constant it can pass through the expectation operator [for a review,

take a peek at Equation (4.5)]. Again, we remind you that E(g,, €,,), that is the covariance between
two different values of the g are zero by the assumption of Equation (17.7). However, just
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because the ¢, are independent does not mean that the e, are. In fact, looking at Equation (17.13),
we are almost ready to make a conclusion about the autocovariance of the e. The part in
parentheses is just the model for the e_i.e. Equation (17.8). Its expectation squared must then be
the variance of e, so that

E(ee. ) = pos,. (17.14)
Following the same reasoning we find that the
Cov(e,, ¢,_;) =p’o.. (17.15)

2
(o)

V with

Summarizing, we can say that the variance matrix of the e, isG.V = >

I-p

B 1 p p2 n-1]

P p P

V — p2 p 1 n-3
_pnfl pn72 pnf3 1 |

Thus the GLS approach only needs to estimate two error related parameters, p and .. In the
Cochrane-Orcutt lterative Procedure we pick a starting value for p, calculate
ﬁ: (X'V'X)X'V'y, then pick p in such a way as to minimize e'e while holding ﬁﬁxed, and
then re-estimate ﬁholding p fixed. One alternates between those two least squares steps until

there is convergence. More general specifications of the nature of the error are possible. While in
this section we have discussed a single autoregressive parameter, in much the same way that we
talk about an AR(1) model in Section 18.4, just like with ARIMA models, you can have AR(2) or
other processes.

17.6 Testing for Autocorrelated Error

Durbin and Watson (1950) proposed using

n

Z(et - eH)z

d=t2 (17.16)

n

2
2l

t=1
as a test statistic for autocorrelated residuals. Here, the hypothesis being tested is Hy: p = 0. For
positive autocorrelation the numerator will be small, while for negative autocorrelation the
numerator will tend to be large. There is an upper limit (d,) and a lower limit (d;) for this statistic
such that

if d <d,, reject Hy,
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if d>d,, fail to reject Hy, and if
ifd<d<d,

the test is inconclusive.

17.7 Lagged Variables

Suppose it is the case that consumers do not immediately react to a change in a marketing variable.
In that case we would expect to see a relationship like the one below,

Y= By txuBite

or perhaps their reaction begins immediately but is distributed across several time periods, as in

Y= Bot XuiBi T X0B,y T oox b e

This is reasonable under many real life marketing situations. For example, the consumer may not
immediately learn about a change in the market. Or perhaps, they are encumbered in their actions
by inventory already on hand. However realistic this may be, there are unfortunately some
problems with this approach. For one thing, what should "s" be? For another, we will be losing a
degree of freedom for each lag, which is to say that the model is not very parsimonious. Finally,
successive values of x might well be highly correlated, so that multicollinearity rears its head.
What we can do is impose some sort of a priori structure on the values of the B,. A graph of some
possible structural assumptions is below:

Bi Bi Bi

S

) 0
1 i i
Of course, any function can be represented by a polynomial of sufficiently high degree, fact

exploited in ANOVA in Section 7.6. We can approximate, for example, a system with s = 7 lags
with a polynomial of the third degree:

Bo=1a,
By=a,*a +a,ta,
B,=a,+ 2a, + 4a, + 8a,
By =a,+3a, +9a,+ 27a,

B,=a,+ 7a, + 49a, + 343a,
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The reader will perhaps recognize that the coefficients for the a values are constant in the first
column, linear in the second, quadratic in the third and cubic in the fourth. If we substitute these
equations back into the model fors =7, 1. e.

Y= Bot XuBi T XwBy +oxB, e,

we get after collecting the a; terms

yi=Bot (X T X T Xt x pat
(X 2% 33X+ +7x p)a +
(X Hax +9x, + o 49K H)ay+
(x, +8x,, +27x,+ - +343x ,)a, T ¢ (17.17)
which is equivalent to an model with

yi=Bot Wea, T wia, +wya, +wia;s +e, (17.18)

where w, = X, + X, + X, + * X _,, and the other w values are defined as above in Equation
(17.17). This is known as Almon's Scheme. If we define

I 0 0 O
1
K=|1 2 4 8

17 27 343
using the coefficients for the x's, then
V(PB) = ’K(W'W) 'K’ (17.19)
lets you test the value s of the maximum lag, while
V(@)=c’(WW)" (17.20)
lets you test the degree of the polynomial required to represent the lag structure.

While Almon's Scheme is quite compelling, another approach was proposed by Koyck, who used
a geometric sequence. Koyck started with the infinite sequence

Vo= xBot X Byt x,LB;, o tey (17.21)

Now, assume that the 3 values are all of the same sign, and that
D Bi=c<w. (17.22)
i=0

We now introduce the backshift operator, B, which is also prominently featured in Chapter 18.
We define
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Bx, =x,,. (17.23)

Of course, one can also say
BBx, = B'x,=x,, (17.24)

and so forth with Bjxl = X,;- Given our two assumptions of Equations (17.21) and (17.22), we can
rewrite the model as

Yo = XtBO +Xt—lﬁl +X172ﬁz tet e

= B[Woxt TWX FWoX +"']+et

where w;, 2 0 fori =0, 1, 2, -, o and Z:wi =1. Given that, we can now rewrite the above
i=0
equation as

=Bw, +W,B+w,B> +--]x, +e,.
0 1 2 t t

Now we introduce the major assumption of the Koyck scheme. The w's have a geometric
relationship to each other as in

w,= (1= A (17.25)
where 0 <A < 1. In that case

W, +W,B+w,B* +---=(1-A)(1+AB+1"B* +--)
1
=(1-A)——.
a=» 1-AB
The fraction on the right hand side of the line immediately above is a consequence of the logic

worked out in Equation (17.11) where we previously worked out the solution to an infinite series
just like the one above. The upshot is that we can now write the model

1-A
Y :Bl(——XB)Xt-'_et

(1-2B)y, =B(1-1)x, +(1-AB)e,
(17.26)
y, —ABy, =B(1-1)x, +e, —ABe,

Y =BA-M)x, +Ay, +(e, — e, )
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As you can see, Koyck's scheme is characterized by autocorrelated error and lagged endogenous
variables on the right hand side. Why would that be? Is there any marketing theory in which that
would make sense? We will be finding out shortly.

17.8 Partial Adjustment by Consumers

The partial adjustment model posits that the optimal value of the y variable, y*, might depend on
x. For example, y could be an amount spent on our brand and x is income. As the consumer
wants to make an optimal choice, and if the relationship is linear, we would have

ylz Bo +xBi, (17.27)

but due to less than perfect information about the market, inventory considerations, inertia, or the
cognitive costs of change, the consumer can only adjust a certain proportion of the way from his or
her previous value, y, ,, to the optimal value at y,. In mathematical terms,

Y=Y :'Y(yt _yt—1)+et (17.28)
with 0 <y < 1. Substituting Equation (17.27) into Equation (17.28), we see that
Yo =Boy +Biyx +A=7)y,, +e,

which bears a resemblance to Koyck's scheme, only here we have an intercept, and the error is not
autocorrelated.

17.9 Adaptive Adjustment by Consumers

Another way that a similar equation may come about is through consumers adapting their
expectations. Define X, as the expected level of x, and assume that some key consumer behavior

depends on X,. The value X, could be the best guess of the price of a good, something to do with
its availability in the market, and so forth. The consumer's behavior should then appear as below

y, =B, +X B, +e,. (17.29)

Now if we assume that the expectations are updated by a fraction of the discrepancy between the
current observation and the previous expectation, we get

Xy _'it—l: 3(x, _it—l)
X, =08x, - 8%, +X
=0x, +(1-9)X,,

X, —(1-9)%,, =8x

te

Define A =1 - . Then starting with the last line of the above equation,
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X, —AX,, =0x,

(1-AB)X, = dx,
X, = 5 X
C1-AB Y

Finally, substituting this result into the model of Equation (17.29), we find out that

Yt =B0+itﬁ]+et

)
=By + ixt e,
1-AB
which is the same as the Koyck Scheme of Equation (17.26). As far as estimating these models,
OLS is not consistent [see Equation (5.11) for a definition of consistency] if there is autocorrelated
error. You can use a two-stage estimator substitutingy,_, for y,,. You can also use x,, as an

instrument for y, ,.

17.10 Pooling Time Series and Cross Section Data
Suppose we had for a particular sales region, call it region 1, the model

y(l) — X(I)B(l) +e(1)

where ym is the T - 1 vector of observations on the response of the market in that region and x"is
a matrix of marketing instruments including such factors as advertising effort, and so forth. In
region 1 we might have k, such instruments. Data have been collected from time period 1 through
time period T and analogously, in region 2, we have done the same thing but with k, different
independent variables:

y(2) — X(Z)B(Z) +e?.

These two regression are only seemingly unrelated because we would expect Cov(e!”, e!”) =0

as long as the two regions are interconnected economically. In point of fact, there are hardly two
regions left on Earth that are not interconnected economically. The covariance identified above is
called contemporaneous for obvious reasons.  Alternating the regions so as to keep
contemporaneous observations next to each other as we move from row to row, we could combine
the two models as below:
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O]
o] 1 x® X0 0 0 ] o Tem
vl o 0 w0 1 xp e ||P] [a
y L e w0 0 0 ] e
y2 =0 0 0 1 x§ o xP B<kz‘> +|e?
. ?2)
L R N (I I
_y(Tz)_ 0 0o .- 0 1 X(Tzl) X(Tzk)Z l3(2) _e(T2)
L kz—

so that our model is now simply y = X + e, with y having n times T rows, assuming n regions and
T observations across time. For now we will continue to assume that n = 2. With
contemporaneous covariance we can model the error covariance matrix as

X010

o=t -

0!X!--10
Ve)=|-—1--r--1--|=,1;,® T

S TR I T

010! 1%

where each null matrix and each copy of X is 2 - 2, and the Kronecker product operator ® is
defined in Section 1.10 (and elaborated on in Section 8.6). In fact, we might note the similarity
between this and the error structure for the Multivariate General Linear model in Equation (8.36)
and Equation (8.37). The difference is that in the General Linear Model, all dependent variables
have the same set of independent variables. In this case, the seemingly unrelated model, we will
use GLS, in which the error matrix, usually notated V, will be I ® X as you can see now

B=[X'I®L)"'X]'X1®%)y (17.30)
and
V) =[X'I®T) ' X] .

We can apply a two step procedure in which we use OLS and estimate S = %, then we apply GLS
using S as a substitute for Z in Equation (17.30). One could also use Maximum Likelihood.

Another way to deal with the pooling problem is to use dummy variables, as we did in Section 7.3
in Equation (7.5) in the context of the analysis of variance. Of course, one could also use effect or
orthogonal coding. If we set up dummies for each time period and each region, this purges the
dependent variable of all variance associated with regions and time. This is a somewhat drastic
approach, since some of the variance of interest will get thrown out with the bath water. A less
drastic approach is to treat time and cross-sections like a random effect in ANOVA. Suppose that
our error term is composed of

=0yt o teg

with V(o) = o2, V(p) = Gi and V(g,) = o.. Given that the data from each region are next to

each other in the y and e vectors,
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V) =c, (117 ® 1) +0,(;1; ® 1)) +0L,;

and we can apply a first step ANOVA to estimate the random variances o and Gi while in the

second step we use those estimates in GLS. Parks has proposed a model like Zellner's seemingly
unrelated regressions but with autoregressive error, and De Silva has suggested a model with
variance components for the cross sections but autoregression for the time component.
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Chapter 18: Time Series
18.1 Stationary Data Series

In this chapter we consider a series of observation taken from a single entity over time much as we
assumed in Section 17.5. The entity generating the data might be a particular company, Web site,
household, market, geographic region or anything else that maintains a fixed identity over time.
Our observations look like y, , y,, -, y, with a joint density Pr(y, , y,, -, ¥,). When data are
collected over time, there is a very important concept that is called stationarity and in fact the
concept shows up in other places in this book, notably Equation (15.1). For our purposes, we
define the stationarity of a time series as

Pr(y s Yo s Vi) = Pr(Y i s Yiome> s Yesmensds (18.1)
for all t, j and k. Given that, it must be the case also that for m =1, +2, -
Pr(y) = Pr(¥,.,)
which then further implies that

E(y) = E(Ym)
and

V(¥) = V(¥ iem)-
Presumably under stationarity it is the case as well that
Pr(yes Vi) = Pr(Yim > Yesmenr) (18.2)
which would then make obvious the notion that
Cov(yi» Yiu) = COV(Yim » Yeeme) = Vi
In general, since
Pr(y,, Yei) = Pr(Yeim » Yeoms) (18.3)
the following is implied
Cov(y, > Yu) = COV(Yiim » Yiems) = ¥ir

The parameter y;is known as the autocovariance at lag j. Putting all of these results together, we
can say that

Y1 u
E Y — E(y) = u
Y u

and
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Yo Yoz 0 Yo

Like all covariance matrices, V(y) is symmetric. If E(y,) does not depend on t, which it should not
with a stationary series, then we would ordinarily expect to find the series in the neighborhood of
p. History tends to repeat itself, probabilistically. By the definition of covariance [Equation

4.7):
¥ = E[(y, - WY - W]

If y;> 0 we would expect that a higher than usual observation would be followed by another higher
than usual observation. We can standardize the covariances by defining the autocorrelation,

Yj

N TR
: VYovYo Yo

As usual, p, = 1. The structure of the autocorrelations will greatly help us in understating the
behavior of the series, y.

18.2 A Linear Model for Time Series

The time series models that we will be covering are called discrete linear stochastic processes and
are of the form

ViTHTeT Y e, ty, et (18.4)

In effect, an observation within the series is conceptualized as being the result of a possibly linear
combination of random inputs. The e, values are assumed identically distributed with

E(e) =0 and
V(e) = o..
Further, we will assume that
Cov(e, e,.)) =0 (18.5)

for all j # 0. These e, values are independent inputs and are often called white noise. We also
assume that

©

Z\yi = c and that

i=0

v~ L.
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Given the preceding long list of notation and assumptions, what is the expectation and variance of
our data? As was pointed out before, it is still the case the E(y)) = n since we can combine
Equation (18.4) and the assumption that E(e,) = 0. As for the variance of V(y,),

V(y) = E(y, - )’

2
=E(utet ye, tye, T -u) (18.6)

where the two p's will just cancel. Squaring the remaining terms, we can collect them into two
sets:

V(y,)=E(e’ +yiel, +ylel, +--)+ E(all cross terms).

We can quickly dispense of all the cross terms from Equation (18.6) because, by assumption
[Equation (18.5)] the e, are independent. Worrying just about the first part of the above equation,
and noting that the expectation of a sum is equal to the sum of the expectation[Equation (4.4)], we
can then say that

V(y) =0l > v, (18.7)
i=0
Are you game for figuring out the covariance at lag j of two data points from the series? Here

goes. We note that the covariance between y, and y,; is E[(y, - p)(y,; - n)]. Once again, all values
of p will cancel leaving us with

Vi=Elle,+ wie Ty, et ) (et Wy ey Ty, e, )]
= E[(\Vjef—j) + (\VjH\Vletz—j—l) + (\Vj+2‘l/2e¢27j72 )+---]+ E(all cross terms).
In this case, E(all cross terms) refers to any term involving E(e, , e ) for m # 0 and once again,

with independent e, all such covariances vanish. That leaves us with the very manageable
Equation (18.8)

Y= Gi(‘lfj VYW Y, )
(18.8)

o0

_ 2

=6, Z\Vi\viﬂ'
i

Neither the variance in Equation (18.7) nor the covariances in Equation (18.8) can exist unless the
infinite sum in those two equations is equal to a finite value. That an infinite series can be finite
is seen in the reasoning that runs between Equation (15.17) and (15.17). We will return to this

concept momentarily, but first we will assume that y, = (I)l, with |¢p| < 1. Then

2
Ve=ntetde, de,t .

It can be shown that
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0 0

oL
Z\Vi:;(b —1_4)'

i=0

That this is so can be seen by defining s = Zd)i =1+¢+¢> +¢’ +---, and then multiplying by ¢
i=0

so that ¢s - s = 1. Solving for s leads to the result, s = 1/1—¢. Combining this result with

Equation (18.7), y, then has a variance of

— Ge
YO 1_ ¢2
and from Equation (18.8), autocovariances of
oed’
YJ = 1_ ¢2 :

Needless to say, this will only work for with |§p| < 1, as otherwise, the variance will blow up. If ¢
= 1 our model becomes

yiTutete, e,
=p te,te, Tt e
=V T €

and so forth, as we could now substitute for y,, above. Obviously, the variance of a series with ¢
=1 blows up.

18.3 Moving Average Processes

A moving average model is characterized by a finite number of non-zero values y, with y, = 0 for
i>q. The model will then look like the following,

ye=utet yie,ty, e,y e

The tradition in this area calls for us to modify the notation somewhat and utilize 8, = -y, which
then modifies the look of the model slightly to
Ve=nte-0e,-0e,--0¢

q tq’

Such as model is often called a Moving Average (q) process, or MA(q) for short. As an example,
consider the MA(1):

Yt:u+et_el €
which can also be written with the Backshift operator, symbolized with the letter B and presented

also in Equation (17.23):
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YT H + (1 - elB)et’

1. €.
Be=¢,, (18.9)
B-(Be)=Be,= ¢, and (18.10)
0
Be =e. (18.11)

We will have much cause to use the backshift operator in this chapter. For now, it will be
interesting to look at the autocovariances of the MA(1) model. These will be

v =El(e, =08 )(e —0ie,)]
= (55 (=6,).
OK, that’s a nice result. What about the autocovariance at lag 2?
v, =El(e, —6ie ), 0,0 5)]
=0.

Since none of the errors overlap with the same subscript, everything vanishes as the errors are
assumed independent. Thus we note that for the MA(1),

_|-ocl0, forj=1
' 0 forj>1

We can plot the autocorrelation function, which plots the value of the autocorrelations at various
lags, j. In the case of the MA(1), the theoretical pattern is unmistakable:

+1

123456 -

-1

As we will see later in the chapter, the correlogram, as a diagram such as the one above is called,
is an important mechanism to identify the underlying structure of a time series. For the sake of
curiosity, it will be nice to look at a simulated MA(1) process with 6, = -.9 and p = 5. The model
would be

246 Chapter 18



Yt = et + '9et-]

and o, =1, v,=0.(1+6;)=1.81L, vy, =—0.(0,)=.9, p, =V, /7, =-5and p; =0 forall j > 1. An
example of this MA(1) process, produced using a random number generator is shown below:

10

t

If 8, =+.9 so that p, = -.5 the correlogram would appear as

+1

123456 -

-1

with the spike heading off in the negative, rather than the positive direction. The plot of the time
series would by more jagged, since a positive value of y, would tend to be associated with a
negative value of y, ;.

10

For an arbitrary value of q, an MA(q) process will have autocovariances
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— —Gi(—9j+919m +"'+eq*j9q forj=1,2,--.q
Y 0 for j > q.

For example the MA(2) process will have a correlogram that has two spikes:

+1

18.4 Autoregressive Processes

Recall that any discrete linear stochastic process can be expressed as
iTutet ye, ty,e,t

as was Equation (18.4). Needless to say this implies that we can express the errors as
CTYi- B Vi€ -V, 6,

Our assumption of stationarity requires that the same basic model that holds for e, must hold true
for e, which would then be

Ci =Y "M- Vi Ch-V,65-

If we substitute the model for e, into the model for y, we get

yo=pte tyly  —u-we , — o lhw,e , e

=pl-y)+e +yy,  + (v, _le)et—z L

You can keep doing this - now we substitute an expression for e_, and so forth until all the e, terms
are banished and all that remains are y, values, with various coefficients. Arbitrarily naming these
coefficients with the letter T, we get something that looks like

V= MY o Ty, T o+ dte, (18.12)
Our discrete linear stochastic process can be expressed as a possibly infinite series of past random
disturbances [i. e. Equation (18.4)]. If the series is finite, we call it an MA process. Any discrete

linear stochastic process can also be expressed as a possibly infinite series of its own past values
disturbances [i. e. Equation (18.12)]. If the series is finite, we will call it an autoregressive
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process, also known as an AR process. This is illustrated below, where we have modified
Equation (18.12) by assuming that 7, = 0 for i > p:

V=0 YuThy ottty ,+ dte,.

To the paragraph above, I would add that a finite AR is equivalent to an infinite MA and a finite
MA is equivalent to an infinite AR. Below we will prove the first of these two assertions. But
before we do that, it should be noted that all of this gives the data analyst a lot of flexibility in
creating a parsimonious model.
The AR(1) model looks like

Y= 0y, T3 +e (18.13)

(1-¢,B)y,=6+e, (18.14)
If we take Equation (18.13) and substitute the equivalent expression for y, ,, we have

V=0 [¢ ¥y, T8 +e, ]+d+e

and then again

V=0 [¢ ([ ysT0+e, ) +d+e, ]+d+e

and so on until we see that we end up with

3 2 3
Yo = -6 te, toe +ore , e 5+
R o

which is an infinite MA process. As claimed, an AR(1) leads to an infinite MA.

What are the moments of an AR(1) process? We have

3
E(Yt)ZW,
1
2
. Ge
Y; = dj o and

1

pj:q){'

For the AR(1), the autocorrelations decline exponentially. An idealized correlogram is shown
below:
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-1

The autocorrelations damp out slowly. Next we show a random realization of the AR(1) model y,
=8y, T6+e;:

35 ¢

25 b

Another example is identical to the first, but the sign on ¢, is reversed. The correlogram appears
below

+1

and then we see a random realization of the series:

10
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18.5 Details of the Algebra of the Backshift Operator

One of the most beautiful aspects of time series analysis is the use of backshift notation. Say we
have an AR(1) with parameter ¢,. We can express the model as

(I-¢,B)y,=e +3d.
Putting the model in reduced form we have
Y. =(1-¢,B)"8+(1-¢B)"e,.

But what does it mean to invert a function with "B" in it? It produces an infinite series. To see
that, start with the basic fact that

1
1-¢,B’

(1-¢,B)" =
So far so good. However, the series
s= ZcbiBi =1+¢,B+¢;B” +¢;B’ +---
i=0

and the series
¢1B'S:¢1B+¢12B2 +¢?B3 oo

differ by 1. Thus

s-¢,B-s=1
and therefore
s=(-¢,B)" =—
! 1-¢,B
(18.15)
=D OB =1+,B+¢/B> +¢/B +--.
i=0
Stationarity, and the need to avoid infinities in the infinite sum, require that
o, < 1. (18.16)
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This is equivalent to saying that the root of that 1 - ¢, B = 0 must lie outside the unit circle.

18.6 The AR(2) Process
The AR(2) model is

Ve =0Yer + 9y, +O+e,
Y: _¢IY1—I - ¢ZYt—2 =0+ €,
(1 _¢1B - ¢2B2)Yt =0+ €,
which is stationary if the roots of
2
1-¢B-¢,B =0

lie outside the unit circle, which is to say

o+, <1, (18.17)
$, - ¢,< 1 and (18.18)
b, < 1. (18.19)

Below, the graph shows the permissible region as a shaded triangle:

18.7 The General AR(p) Process

In general, an AR model of order p can be expressed as
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(1-¢,B- ¢2B2 - (I)po)Yt =d+e,

(I)(B)Yt =3+ o
y = d+e,
CoeB)
Note that here we have introduced a new way of writing 1 - ¢,B - (])2B2 - - (I)po, namely to call it

simply ¢(B). The autocorrelations and the ¢, are related to each other via what are known as the
Yule-Walker Equations:

P =0, +b,p, +.“(I)pppfl

p2 =¢1p1 +¢2 +.”¢ppp—2

Pp = d)lpp—l +¢2pp—2 +"'¢p

which can be used to estimate &) ; values.

18.8 The ARMA(1,1) Mixed Process

Consider the model
y, =0+¢,y,_, +e, —06e,
(1-¢,B)y, =8+(1-6,B)e,.

Here we have both an autoregressive and a moving average component. The AR part results in an
infinite MA model with

In compact notation we can say that y(B) = ¢-1(B) - 0(B). The MA part results in an infinite AR
model with

1-¢,B 8
Yo~ =€
1-0B°" 1-0,B
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Again we can compactify the notation noting that n(B) = ¢(B) - O_I(B). Mixed models let you
achieve parsimony as you can represent an infinite MA with a finite AR and vice versa. The
situation that we have at hand can be graphed as follows:

G—> yB) | — ¥

We conceptualize of our observed series of data as being driven by are series of random shocks, of
random values or white noise inputs. These inputs are then passed through a filter with various
properties and that eventually leads to an output, which consists of our data. Modeling the data
requires that we come up with a parsimonious description, one with few model parameters, of the
filter, i.e y(B).

What stationarity is to the AR side, invertibility is to the MA side. Invertibility requires that the
roots of

1-0B-6,B"-~-0B'=0

lie outside of the unit circle.

18.9 The ARIMA(1,1,1) Model

A series may be relatively homogeneous, looking pretty much the same at all time periods, but it
may end up being non-stationary simply because it shows no permanent affinity for a particular
level or mean. Even though the original series of data may not be stationary, differences between
successive observations may be stationary:

d =Y -y =(-By,
Simply put, we can apply an ARMA model to the d. When we do so, this is called an ARIMA
model with the middle I referring to the fact that it is integrated. If the first differences are not
stationary, the second differences might be, i. e.

d’t = dl - dt-l =(1-B)1- B)Yt'

The ARIMA(1,1,1) process, with the middle number referring to the number of differences that
are taken can be described as

dt = (I)ldt—l _elet—l +¢
Ye =Y = ¢1 (Yt - Yt—l) - eet—l +¢,

Ye=U+d)y =y =66 +e,.

Thus we see that the ARIMA(1,1,1) is an ARMA(2,1) where the first ARMA AR parameter is
equal to 1 + ¢, while the second ARMA(2,1) AR parameter is -¢,. These parameters violate the
rules for stationarity in Equations (18.17), (18.18) and (18.19). Similarly, an ARIMA(0,1,1)
process looks like
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YT Y + € - 9let-l

which violates the stationarity rule for an AR(1) [Equation (18.16)] right off the top since "¢," =
1!

Thus we see the importance of differencing the series first, if necessary, prior to fitting an ARMA
model.

We can wrap up this section with another brief note about the backshift notation and the
ARIMA(1,1,1) model. Such a model can be written quite elegantly as

(1-¢,B)(1-B)y, =8+ (1-6Be,

In the model, the constant term o implies that the average change will have the same sign as & and
the series will drift in the direction of the sign of 5.

18.10 Seasonality

Differencing, AR or MA parameters may be needed at various lags. For quarterly data, you may
need to look at lags of 4, or for monthly data, lags of 12, which may occur whenever there are
yearly patterns in data. For example, the following pattern seen in quarterly data:

+1

-1
may require that you difference the data at a lag of 4, i.e analyze d, = (1 - B4)yt.

18.11 Identifying ARIMA(p,d,q) Models

In addition to the cues afforded in the autocorrelations, we can also look at what are known as the
partial autocorrelations. For each lag j, you estimate p;controlling for the first j - 1 values p; ,,

Pj20 " Pr-

For a nonstationary process, the autocorrelations will be large at very long lags. On the other
hand, over-differencing tends to produce an MA(1) with 6, = 1.

For an AR process, the autocorrelations will decline exponentially. The partial autocorrelations
will exhibit significant spikes at the first p lags.

For an MA process, the autocorrelations will exhibit significant spikes at the first q lags. The
partial autocorrelations will exhibit exponential decline.

Time Series 255



For a mixed process, the autocorrelations as well as the partial autocorrelations will decline
exponentially.

It is generally a good idea to run the error of your model through the same diagnostic process to
make sure that it is indeed acting like white noise. In effect, one adds a term to the ARIMA
model, and then looks at the error to see if it is white noise yet. The process is repeated until the
error is completely whitened.
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Appendices

A. The Greek Alphabet

alpha
beta

gamma

S R ™ R

delta
epsilon
zeta

eta

@ T N O > 1w >

D 3 g M

theta

-
P

iota
kappa
lambda
mu

nu

[1]

©Q uUyn < T > A
Z Zz > =

c
0O € X e < A M9 g0

X1 or ksi
omicron
phi T

rho

e}

sigma o
tau T
upsilon
phi
chi
psi

omega

e € X £
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